Abstract:
Disclosed systems, methods, and computer program products enable high symbol-rate optical Nyquist signal generation with roll-off factors approaching zero by combining digital and all-optical methods. The combined digital and all-optical methods utilize all-optical sine-shaped pulse generation and orthogonal time-division multiplexing with quadrature amplitude modulation using digital Nyquist signals. Disclosed embodiments exhibit inter-channel-interference penalties that are less than 0.5-dB for both 75-GBaud and 125-GBaud optical Nyquist signals, in contrast to conventional signals generated using rectangular waveform driving signals that exhibit penalties greater than 2.5-dB and 1.5-dB for 75-GBaud and 125-GBaud signals, respectively. The disclosed embodiments, therefore, enable significant improvement over conventional systems by reducing inter-channel-interference penalties caused by excess modulation induced bandwidth.
Abstract:
Method and apparatus for allocating radio resources for use by mobile user equipment (UE), including sensing available radio spectrum resources, allocating at least a portion of the sensed available resources for use by at least one UE, detecting changes in the radio resource usage situation, and modifying the allocation of resources based at least in part on the detected changes in the radio resource usage situation.
Abstract:
An apparatus and method for receiving and transmitting data is disclosed. In one exemplary embodiment, the method includes: controlling a data source output source frames at a first data rate; receiving a source frame at an encoder at the first data rate; reading a fixed number of n-byte data blocks from the source frame, wherein n is an integer; appending an (m-n)-byte parity block to each n-byte data block to form the fixed number of m-byte first code words, wherein m is an integer greater than n; prepending to the fixed number of m-byte first code words a first prefix to form an error correcting physical frame, the first prefix including an error correction indicator set to a first value and an extra data indicator set to a second value; and transmitting the error correcting physical frame at a fixed transmit data rate.
Abstract:
An optical transmitter transmits an orthogonal frequency division multiplexing symbol in which only one-half of available subcarriers are modulated with data and the remaining subcarriers are suppressed by not modulating with data. The transmission is of duration equal to half the symbol period of the OFDM symbol, resulting in a half-cycle transmission. An optical receiver receives the half-cycle transmission OFDM symbol, regenerates the full time domain representation and recovers data modulated on the one-half of available subcarriers. The modulated subcarriers and the suppressed subcarriers alternate in the frequency domain.
Abstract:
On a tablet user equipment that is proximate to a hand phantom, a method determines the total radiated power of the user equipment includes, in response to a preset criterion, obtains a characteristic of the phantom, obtains a characteristic of an antenna of the user equipment, and obtains a radio characteristic of the user equipment. The method may also include transmitting the phantom characteristic, the antenna characteristic, and the radio characteristic to a test equipment.
Abstract:
The present invention relates to optical transmitters, transceivers, and transponders used for transmission of information or data in any form through a physical medium dependent (PMD) network. The speed of such networks depends, in part, on the density of information that can be transmitted through the physical medium. Optical transmitters or transceivers can be used to transmit multiple independent signals simultaneously through the same medium using different directions or axes of polarization, where the difference in the directions or axes of polarization can be used to distinguish the multiple signals at the receiver. In this invention, we use a master laser (l0) to synchronize two slave lasers (l1 and l2) by its x-polarization and y-polarization components of carrier, respectively, so that two slave lasers can be enforced to lock on exactly the same wavelength l0 with perpendicular polarization directions.
Abstract:
Apparatus and methods for improving a coverage of an uplink Voice over IP (VoIP) transmission of a wireless device are disclosed. A wireless device assigns a first hybrid automatic repeat request (HARQ) process to a first VoIP packet of the wireless device. The wireless device then assigns a second HARQ process to a second VoIP packet of the wireless device. The wireless device then transmits the first and second VoIP packets to a base station.
Abstract:
Multiple wireless devices in a network perform full duplex communication in which the transmission path and receiving path are spatially separated to allow simultaneous transmission and receiving. The wireless devices can either be controlled using a centralized, or point, coordination function or a distributed coordination function. A full-duplex wireless device senses the medium during transmission by itself and selectively continues the transmission when a signal is sensed on the medium. A full-duplex wireless device measures signal being transmitted by its transmitter and estimates parameters that can be used to cancel the contribution of the locally transmitted signal to the locally received signal concurrently being received during the transmission. The transmit antenna and the receive antenna of a full-duplex wireless device can be configured to be spatially isolated from each other to minimize interference between the antenna functions.
Abstract:
A spatial channel state information (CSI) feedback technique is incorporated into multiple-input multiple-output mobile communications technologies. User equipment (UE) channel conditions are measured and, based on the measurements, codebook subsets are selected to which indices are assigned and fed back to a base station.