摘要:
Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is coupled to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
摘要:
Sensors, sensing arrangements and devices, and related methods are provided. In accordance with an example embodiment, an impedance-based sensor includes a flexible dielectric material and generates an output based on pressure applied to the dielectric material and a resulting compression thereof. In certain embodiments, the dielectric material includes a plurality of regions separated by gaps and configured to elastically deform and recover in response to applied pressure.
摘要:
In connection with various example embodiments, an organic electronic device is provided with an organic material that is susceptible to decreased mobility due to the trapping of electron charge carriers in response to exposure to air. The organic material is doped with an n-type dopant that, when combined with the organic material, effects air stability for the doped organic material (e.g., exhibits a mobility that facilitates stable operation in air, such as may be similar to operation in inert environments). Other embodiments are directed to organic electronic devices n-doped and exhibiting such air stability.
摘要:
A method of patterning the surface of a substrate with at least one organic semiconducting compound including: (a) providing a stamp having a surface including a plurality of indentations formed therein defining an indentation pattern contiguous with a stamping surface and defining a stamping pattern, (b) coating the stamping surface with at least one compound (C1) capable of binding to the surface of the substrate and at least one organic semiconducting compound (S), (c) contacting at least a portion of the surface of a substrate with the stamping surface to allow deposition of the compound (C1) on the substrate, (d) removing the stamping surface to provide a pattern of binding sites on the surface of the substrate, (e) applying a plurality of crystallites of the organic semiconducting compound (S) to the surface of the substrate to bind at least a portion of the applied crystallites to the binding sites on the surface of the substrate.
摘要:
The present invention provides apparatus and a method of fabricating the apparatus. The apparatus includes a substrate having a surface and an organic field-effect transistor (OFET) located adjacent the surface of the substrate. The OFET comprising a gate, a channel, a source electrode, and a drain electrode. The channel comprises a densified layer of organic molecules with conjugated multiple bonds, axes of the organic molecules being oriented substantially normal to the surface.
摘要:
The present invention provides an organic field effect transistor and a method of fabricating the transistor. The transistor includes a semiconductive film comprising organic molecules. Probe molecules capable of binding to target molecules are coupled to an outer surface of the semiconductive film such that the interior of the film being substantially free of the probe molecules.
摘要:
Semiconductor apparatus comprising: a substrate having a substrate surface; a layer of a first material overlying a first region of the substrate surface; a layer of a semiconductor overlying the layer of first material and overlying a second region of the substrate surface; a first region of the layer of semiconductor, overlying the layer of first material and having a first conductivity; a second region of the layer of semiconductor, overlying the second region of the substrate surface and having a second conductivity; and the first conductivity being substantially different from the second conductivity. Such semiconductor apparatus further comprising a layer of a second material overlying the second region of the substrate surface, the second region of the layer of semiconductor overlying the layer of the second material.
摘要:
The present invention provides apparatus and a method of fabricating the apparatus. The apparatus includes a substrate having a surface and an organic field-effect transistor (OFET) located adjacent the surface of the substrate. The OFET comprising a gate, a channel, a source electrode, and a drain electrode. The channel comprises a densified layer of organic molecules with conjugated multiple bonds, axes of the organic molecules being oriented substantially normal to the surface.
摘要:
An organic field effect transistor (FET) is described with an active dielectric layer comprising a low-temperature cured dielectric film of a liquid-deposited silsesquioxane precursor. The dielectric film comprises a silsesquioxane having a dielectric constant of greater than 2. The silsesquioxane dielectric film is advantageously prepared by curing oligomers having alkyl(methyl) and/or alkyl(methyl) pendant groups. The invention also embraces a process for making an organic FET comprising providing a substrate suitable for an organic FET; applying a liquid-phase solution of silsesquioxane precursors over the surface of the substrate; and curing the solution to form a silsesquioxane active dielectric layer. The organic FET thus produced has a high-dielectric, silsesquioxane film with a dielectric constant of greater than about 2, and advantageously, the substrate comprises an indium-tin oxide coated plastic substrate.
摘要:
A method for making an IC on a surface of a planar substrate includes forming a continuous first layer on the surface of the substrate and pressing a surface of a stamp into the first layer to produce a pattern of non-intersecting smooth regions on the surface. A rough region of the surface of the first layer laterally borders and laterally surrounds each smooth region of the surface of the first layer. The pattern of smooth and rough regions on the surface of the first layer copies a pattern of smooth and rough areas on the surface of the stamp. The method also includes forming a continuous second layer on the patterned first layer. The first layer is one of a dielectric layer and an organic semiconductor layer, and the second layer is the other of a dielectric layer and an organic semiconductor layer.