摘要:
A method, a device and a computer readable for automatically identifying a Christmas tree scene and setting a camera's focus and/or exposure parameters in a way that yields images with high image quality. The Christmas tree scene identification can be performed by segmenting the image into bright and dark regions, identifying the light objects, collecting the statistics of the light objects, and classifying the scene based on the statistics of the light objects, or by collecting the pixel value statistics for the image, and classifying the scene based on the statistics of the pixel values, or by collecting the pixel value statistics for the image, filtering the image, collecting the pixel value statistics for the filtered image, and classifying the scene by comparing the statistics of the pixel values before and after filtering. The focus and exposure settings can be adjusted based on the Christmas tree scene identification results. For Christmas tree scenes, the exposure can be set based on a value that is adjusted upwards from the mean luminance of the image, or on a value that is calculated from the top luminance value. The focus can be set by identifying the lights in the image, and minimizing the light size in the image.
摘要:
A method and device for receiving an image of a symbology captured by an imaging device, displaying an image of the symbology, displaying a boundary indicator around the symbology, adjusting the image size to correspond with the boundary indicator, decoding the symbology, and initiating an action by device.
摘要:
As set forth herein, a computer-implemented method facilitates pre-analyzing an image and automatically suggesting to the user the most suitable regions within an image for text-based personalization. Image regions that are spatially smooth and regions with existing text (e.g. signage, banners, etc.) are primary candidates for personalization. This gives rise to two sets of corresponding algorithms: one for identifying smooth areas, and one for locating text regions. Smooth regions are found by dividing the image into blocks and applying an iterative combining strategy, and those regions satisfying certain spatial properties (e.g. size, position, shape of the boundary) are retained as promising candidates. In one embodiment, connected component analysis is performed on the image for locating text regions. Finally, based on the smooth and text regions found in the image, several alternative approaches are described herein to derive an overall metric for “suitability for personalization.”
摘要:
A method for adjusting a license plate that is detected in a captured image includes automatically determining at least one set of correction parameters corresponding to a slant-oriented license plate. The method further includes receiving an input image representing a detected license plate. In response to receiving the input image, the method includes automatically adjusting the input image to obtain a corrected image using the at least one set of correction parameters.
摘要:
A method determines a license plate layout configuration. The method includes generating at least one model representing a license plate layout configuration. The generating includes segmenting training images each defining a license plate to extract characters and logos from the training images. The segmenting includes calculating values corresponding to parameters of the license plate and features of the characters and logos. The segmenting includes estimating a likelihood function specified by the features using the values. The likelihood function measures deviations between an observed plate and the model. The method includes storing a layout structure and the distributions for each of the at least one model. The method includes receiving as input an observed image including a plate region. The method includes segmenting the plate region and determining a license plate layout configuration of the observed plate by comparing the segmented plate region to the at least one model.
摘要:
A system and method for dynamic zoom adjustment based, in part, upon: the raster data in the user selected local area is disclosed; and/or the knowledge of a prevailing font size in a user selected region such that the text in that region is enlarged to be just readable. To achieve this, the detail in the local area is examined and a zoom factor is calculated that depends on the image detail and/or the viewing screen resolution. A document server may be employed to develop the information needed to enable this functionality. In one embodiment, the information is developed by RIPping the document, and then storing a spatial map of localized details (e.g., font sizes at several display resolutions) to automatically adjust a zoom level or factor and thereby facilitate navigation and reading.
摘要:
Described herein is a level I (overt) feature for security printing intended to deter unauthorized modification of text documents. The exemplary method includes generating a textured background that follows the contour of the text it surrounds and is difficult to modify. The background patterns may be generated with a two-step procedure that first creates a smooth function and then modulates it to produce patterns with sharp contrast. Tampering will be deterred as visible artifacts will be created when text is altered. Compared to the levels II and III features, the exemplary method relies on human vision for detection and does not require any special tools and instruments. It can be used in applications where fast, simple and inexpensive inspection is essential, or combined with other technologies for enhancing overall effectiveness.
摘要:
A method and system render rasterized data by receiving non-rasterized page description language data and a corresponding transformation matrix representing transformation operations to be performed. The non-rasterized page description language data is rasterizing to create rasterized data. The corresponding transformation matrix is decomposed into a plurality of individual transformation operation matrices and a discrete transformation operation value, from a corresponding individual transformation operation matrix, is generated for each transformation operation to be performed upon the rasterized data. The transformation operations are performed upon the rasterized data based upon the generated discrete transformation operation values.
摘要:
An image watermarking method includes a color transform on RGB image data to derive CMYK image data that define a constant K image. Variable infrared (IR) mark data defining an IR mark are received and a sparse two-dimensional pattern of black pixels is defined that corresponds to the variable IR data, e.g., using Gold codes or pseudorandom binary sequences. A watermarked black separation K″ is defined by embedding the sparse two-dimensional pattern into the constant K black separation K′ while maintaining local average levels. A watermarked image includes the watermarked black separation K″ in combination with the CMY separations of the constant K image. A decoding process includes using an IR microscope fitted with IR LEDs and an IR pass filter to capture an IR image, which is subjected to exposure correction, thresholding, and dilation operations to extract the two-dimensional pattern for subsequent correlation processing.