摘要:
Kits of parts comprising a coloring solution, a porous zirconia article, optionally application equipment, the solution comprising cation(s) of coloring agent(s) in an amount above about 0.05 mol/l, solvent(s) for the ion(s), optionally complexing agent(s), optionally thickening agent(s), optionally organic marker substance(s), optionally additive(s), the porous zirconia article showing a N2 adsorption and desorption of isotherm type IV according to IUPAC classification. Methods for coloring a zirconia article comprising the steps of providing a porous zirconia article and a coloring solution, applying the coloring solution to at least a part of the outer surface of the porous zirconia article, optionally drying the porous zirconia article of the preceding step, sintering the porous zirconia article to obtain a colored zirconia ceramic article.
摘要:
A method of making a monolithic dental restoration. The method includes the steps of providing a monolithic precursor of a dental restoration and firing the monolithic dental restoration precursor to provide the monolithic dental restoration. The zirconia material of both the dental restoration precursor as well as the dental restoration has a relative density of greater than 98% of the theoretic density of the zirconia material. The invention helps providing a color of a non-glazed dental restoration which resembles the color of a glazed dental restoration.
摘要:
The invention relates to a kit of parts for preparing a glass ionomer composition for dental use, the kit of parts comprising a Powder Part P and a Liquid Part L, Powder Part P comprising: acid-reactive inorganic filler, Liquid Part L comprising: water, complexing agent, polyacid, either the Powder Part P or the Liquid Part L or the Powder Part P and the Liquid Part L comprising non-aggregated nano-sized particles based on silica or alumina, the composition obtained by combining the components of Powder Part P and Liquid Part L before hardening comprising the components in the following amounts: non-aggregated nano-sized particles: from 0.1 to 15 wt.-%, acid-reactive filler in an amount from 50 to 75 wt.-%, polyacid: 7 to 20 wt.-%, complexing agent: 0.5 to 3 wt.-%, water: 5 to 18 wt.-%, wt.-% with respect to the weight of the whole composition.
摘要:
The present invention relates to a process for producing a ceramic article, the process comprising the steps of providing a printing sol, the printing sol comprising solvent, nano-sized particles, radiation curable monomer(s) and photoinitiator, the printing sol having a viscosity of less than 500 mPa*s at 23° C., processing the printing sol as construction material in an additive manufacturing process to obtain a 3-dim article being in a gel state, the 3-dim article having a Volume A, transferring the 3-dim article being in a gel state to a 3-dim article being in an aerogel state, heat treating the 3-dim article to obtain a sintered 3-dim ceramic article, the ceramic article having a Volume F, Volume A of the 3-dim article in a gel state being more than 500% of Volume F of the ceramic article in its sintered state. The invention also relates to a ceramic article obtainable according to such a process. The ceramic article can have the shape of a dental or orthodontic article.
摘要:
The invention relates to the use of a printing sol as construction material in an additive manufacturing process for producing a 3-dim article, the printing sol comprising solvent(s), nano-sized crystalline zirconia particles in an amount from 2 to 25 vol.-% with respect to the volume of the sol, the average primary particle size of the nano-sized crystalline zirconia particles being in a range up to 50 nm, a first monomer being a polymerizable surface modification agent represented by formula A-B, with A being capable of attaching to the surface of the nano-sized crystalline zirconia particles and B being a radiation curable group, optionally a second monomer, the second monomer comprising at least one radiation curable moiety but no acidic or silane group(s), photo initiator(s). The invention also relates to a ceramic article obtainable according to such a process.
摘要:
The invention relates to a dental milling block (1) comprising a dental article (2) having an outer surface, the dental article having been produced based on personalized data, wherein the outer surface of the dental article is at least partially covered with a surrounding material. The invention further relates to a process of producing a dental milling block, the process comprising the steps of: •a) providing a personalized Data Set C containing geometry data of the dental article and colour data related to said geometry data, •b) generating a layer of hardenable material on a surface, •c) applying a colour agent to the layer of hardenable material of step b), wherein the colour agent is applied to at least some regions of those areas of the layer of hardenable material which are related to the geometry data of the dental article, •d) consolidating the result obtained in step c) thereby obtaining an at least partially hardened layer of material.
摘要:
A method of making a physical object by additive manufacturing. In the method a hardenable primary material is provided, the object is built up by successively hardening layers of the hardenable primary material, and the object is cleaned from excess material by moving the object and thereby generating a mass inertial force in the excess material. The invention facilitates the making of objects by additive manufacturing.
摘要:
The invention relates to a coloured zirconia ceramic dental mill blank having fluorescing properties, processes of production such a mill blank and uses thereof, in particular for producing zirconia ceramic dental restorations. The dental mill blank having a shape allowing the dental mill blank to be attached or fixed to a machining device, the dental mill blank comprising a porous zirconia material, the porous zirconia material comprising the oxides Zr oxide calculated as ZrO2: from about 80 to about 97 wt.-%, Al oxide calculated as Al2O3: from about 0 to about 0.15 wt.-%, Y oxide calculated as Y2O3: from about 1 to about 10 wt.-%, Bi oxide calculated as Bi2O3: from about 0.01 to about 0.20 wt.-%, Tb oxide calculated as Tb2O3: from about 0.01 to about 0.8 wt.-%, and optionally one or two of the following oxides: Er oxide calculated as Er2O3: from about 0.01 to about 3.0 wt.-%, Mn oxide calculated as MnO2: from about 0.0001 to about 0.08 wt.-%, wt.-% with respect to the weight of the porous zirconia material.
摘要:
The invention relates to the use of a printing sol as construction material in an additive manufacturing process for producing a 3-dim article, the printing sol comprising solvent(s), nano-sized crystalline zirconia particles in an amount from 2 to 25 vol.-% with respect to the volume of the sol, the average primary particle size of the nano-sized crystalline zirconia particles being in a range up to 50 nm, a first monomer being a polymerizable surface modification agent represented by formula A-B, with A being capable of attaching to the surface of the nano-sized crystalline zirconia particles and B being a radiation curable group, optionally a second monomer, the second monomer comprising at least one radiation curable moiety but no acidic or silane group(s), photo initiator(s). The invention also relates to a ceramic article obtainable according to such a process.
摘要:
The invention relates to a kit of parts for preparing a glass ionomer composition for dental use, the kit comprising a Paste A and a Paste B, Paste A comprising water, acid-reactive inorganic filler A, non acid-reactive filler B1, sugar alcohol with 6 hydroxyl moieties, Paste B comprising water, polyacid, non acid-reactive filler B2, the sugar alcohol being present in an amount of not more than 2 wt. % and the water being present in an amount of not more than 15 wt. %, wt. % with respect to the whole composition obtained when mixing Paste A and Paste B. The invention also relates to a hardened glass ionomer composition for dental use obtained by mixing Paste A and Paste B of the kit of parts