Abstract:
Embodiments of the present invention allow more full characterization of a stenotic lesion by measuring both pressure drop across the stenotic lesion and the size of the vessel lumen adjacent the stenotic lesion, both with sensors delivered intravascularly to the stenotic lesion site. In preferred embodiments, the size (e.g., inner diameter, cross-sectional profile) of the vessel lumen adjacent the stenotic lesion can be measured via one or more intravascular ultrasound transducers. In preferred embodiments, the intravascular ultrasound transducer(s) can be delivered to the site of the stenotic lesion with the same delivery device that carries the pressure transducer(s).
Abstract:
An ultrasonic transducer includes a backing element, an active element overlying the backing layer, and a matching element overlying the active element, the matching element having an inner surface that contacts the active element and an outer surface with a non-homogeneous texture and/or material composition. The matching element may be formed by subtractive or deposition techniques.
Abstract:
Methods of providing image-guided transendocardial injection of a therapeutic agent into a left ventricular wall of a heart. Some methods enable injections into heart tissue under visualization. The methods may include providing an endoventricular injection catheter having integrated echocardiographic capability. The endoventricular injection catheter may have an imaging core and an injection system carried on the elongated body with the imaging core. The method may include positioning the endoventricular injection catheter into the left ventricle of the heart, which inserts the imaging core into the heart. The method may also include transmitting ultrasonic energy via the imaging core, receiving reflected ultrasonic energy at the distal end, visualizing the left ventricular wall of the heart using the imaging core, identifying infarct regions of the left ventricle, and injecting a therapeutic agent into the visualized infarcted regions of the left ventricle using the injection system.
Abstract:
An ultrasonic transducer includes a backing element, an active element overlying the backing layer, and a matching element overlying the active element, the matching element having an inner surface that contacts the active element and an outer surface with a non-homogeneous texture and/or material composition. The matching element may be formed by subtractive or deposition techniques.
Abstract:
An imaging window of an imaging catheter includes a first imaging window section and a second imaging window section. The first imaging window section has a finite length and is formed from a first material having a flexural modulus. The second imaging window section has a finite length and is formed from a second material having a flexural modulus. The flexural modulus of the first material is different than the flexural modulus of the second material.
Abstract:
Methods of providing image-guided transendocardial injection of a therapeutic agent into a left ventricular wall of a heart. Some methods enable injections into heart tissue under visualization. The methods may include providing an endoventricular injection catheter having integrated echocardiographic capability. The endoventricular injection catheter may have an imaging core and an injection system carried on the elongated body with the imaging core. The method may include positioning the endoventricular injection catheter into the left ventricle of the heart, which inserts the imaging core into the heart. The method may also include transmitting ultrasonic energy via the imaging core, receiving reflected ultrasonic energy at the distal end, visualizing the left ventricular wall of the heart using the imaging core, identifying infarct regions of the left ventricle, and injecting a therapeutic agent into the visualized infarcted regions of the left ventricle using the injection system.
Abstract:
A catheter a first sheath having a proximal end and a distal end, and a length extending between the proximal end and the distal end. The first sheath being devoid of any bonds between the proximal end and the distal end, and a flexural modulus of the first sheath varying along the length. A method of making a catheter having more than one flexural modulus.
Abstract:
An imaging window of an imaging catheter includes a first imaging window section and a second imaging window section. The first imaging window section has a finite length and is formed from a first material having a flexural modulus. The second imaging window section has a finite length and is formed from a second material having a flexural modulus. The flexural modulus of the first material is different than the flexural modulus of the second material.
Abstract:
A catheter-based imaging system comprises a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further comprises an image generator coupled to the ultrasonic energy receiver that generates an image.
Abstract:
An ultrasonic transducer includes a backing element, an active element overlying the backing layer, and a matching element overlying the active element, the matching element having an inner surface that contacts the active element and an outer surface with a non-homogeneous texture and/or material composition. The matching element may be formed by subtractive or deposition techniques.