Abstract:
Treatment validation techniques include generating a modified treatment target from an original treatment target using a modification process, and comparing induced aberrations provided by the original and modified treatment targets, so as to verify the modified treatment target or the modification process. In some cases, a modification process may include a deconvolution process, a low pass filter process, a scaling process, or an adjustment process. The induced aberrations may include high order aberrations, such as spherical aberration.
Abstract:
Embodiments of the present invention encompass systems and methods for customized vision treatments that account for effects associated with corneal flap creation.
Abstract:
Random human eye generators are provided for use in evaluating aspects of treatment in refractive surgery or other therapeutic vision modalities. Exemplary random eye generators include an optical parameter such as a manifest refractive sphere parameter or a wavefront sphere parameter, and incorporate a Rayleigh distribution for such parameters.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Deconvolution systems and methods based on cornea smoothing can be used to obtain an ablation target or treatment shape that does not induce significant high-order aberrations such as spherical aberration. Exemplary ablation targets or treatment shapes can provide a post-operative spherical aberration that is equal to or below a naturally occurring amount of spherical aberration.
Abstract:
Wavefront measurements of eyes are typically taken when the pupil is in a first configuration in an evaluation context. The results can be represented by a set of basis function coefficients. Prescriptive treatments are often applied in a treatment context, which is different from the evaluation context. Hence, the patient pupil can be in a different, second configuration, during treatment. Systems and methods are provided for determining a transformed set of basis function coefficients, based on a difference between the first and second configurations, which can be used to establish the vision treatment.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Wavefront measurements of eyes are typically taken when the pupil is in a first configuration in an evaluation context. The results can be represented by a set of basis function coefficients. Prescriptive treatments are often applied in a treatment context, which is different from the evaluation context. Hence, the patient pupil can be in a different, second configuration, during treatment. Systems and methods are provided for determining a transformed set of basis function coefficients, based on a difference between the first and second configurations, which can be used to establish the vision treatment.
Abstract:
Wavefront measurements of eyes are typically taken when the pupil is in a first configuration in an evaluation context. The results can be represented by a set of basis function coefficients. Prescriptive treatments are often applied in a treatment context, which is different from the evaluation context. Hence, the patient pupil can be in a different, second configuration, during treatment. Systems and methods are provided for determining a transformed set of basis function coefficients, based on a difference between the first and second configurations, which can be used to establish the vision treatment.