Abstract:
Systems and methods for removing an epithelial layer disposed over a stromal layer in a cornea irradiate a region of the epithelial layer with a pulsed beam of ablative radiation. The ablative radiation is scanned to vary the location of the beam within the region in accordance with a pulse sequence. The pulse sequence is arranged to enhance optical feedback based on a tissue fluorescence of the epithelial layer. The penetration of the epithelial layer is detected in response to the optical feedback. The use of scanning with the pulse sequence arranged to enhance optical feedback allows large areas of the epithelium to be ablated such penetration of the epithelial layer can be detected.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
A method of modifying a refractive profile of an eye having an intraocular device implanted therein, wherein the method includes determining a corrected refractive profile for the eye based on an initial refractive profile, identifying one or more locations within the intraocular device based on the corrected refractive profile, and directing a pulsed laser beam at the locations to produce the corrected refractive profile. A system of modifying an intraocular device located within an eye, wherein the system includes a laser assembly and a controller coupled thereto. The laser assembly outputs a pulsed laser beam having a pulse width between 300 picoseconds and 10 femtoseconds. The controller directs the laser assembly to output the pulsed laser beam into the intraocular device. One or more slip zones are formed within the intraocular device in response thereto, and the slip zones are configured to modify a refractive profile of the intraocular device.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Systems and methods for removing an epithelial layer disposed over a stromal layer in a cornea irradiate a region of the epithelial layer with a pulsed beam of ablative radiation. The ablative radiation is scanned to vary the location of the beam within the region in accordance with a pulse sequence. The pulse sequence is arranged to enhance optical feedback based on a tissue fluorescence of the epithelial layer. The penetration of the epithelial layer is detected in response to the optical feedback. The use of scanning with the pulse sequence arranged to enhance optical feedback allows large areas of the epithelium to be ablated such penetration of the epithelial layer can be detected.
Abstract:
Devices, systems, and methods that facilitate optical analysis, particularly for the diagnosis and treatment of refractive errors of the eye. An optical diagnostic method for an eye includes obtaining a sequence of aberration measurements of the eye, identifying an outlier aberration measurement of the sequence of aberration measurements, and excluding the outlier aberration measurement from the sequence of aberration measurements to produce a qualified sequence of aberration measurements. The sequence of aberrations measurements can be obtained by using a wavefront sensor. An optical correction for the eye can be formulated in response to the qualified sequence of aberration measurements.
Abstract:
Devices, systems, and methods that facilitate optical analysis, particularly for the diagnosis and treatment of refractive errors of the eye. An optical diagnostic method for an eye includes obtaining a sequence of aberration measurements of the eye, identifying an outlier aberration measurement of the sequence of aberration measurements, and excluding the outlier aberration measurement from the sequence of aberration measurements to produce a qualified sequence of aberration measurements. The sequence of aberrations measurements can be obtained by using a wavefront sensor. An optical correction for the eye can be formulated in response to the qualified sequence of aberration measurements.
Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.