Abstract:
A lithographic apparatus having: a substrate table constructed to hold a substrate; a projection system configured to project a patterned radiation beam onto a target portion of the substrate; a substrate surface actuator including a fluid opening for fluid flow therethrough from/onto a facing surface facing the substrate surface actuator to generate a force between the substrate surface actuator and the facing surface, the facing surface being a top surface of the substrate or a surface substantially co-planar with the substrate; and a position controller to control the position and/or orientation of a part of the facing surface by varying fluid flow through the fluid opening to displace the part of the facing surface relative to the projection system.
Abstract:
A positioning system for controlling a relative position between a first component and a second component of a lithographic apparatus, wherein a position of each component is defined by a set of orthogonal coordinates, the positioning system including: a measuring device configured to determine an error in the momentary position of one of the components with respect to a setpoint position in a measurement coordinate; and a controller configured to control movement of the other component in a control coordinate based on the determined error; wherein the measurement coordinate is different from the control coordinate.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.
Abstract:
In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.
Abstract:
In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.
Abstract:
A position control system includes a position measurement system including a first position measurement configuration arranged to determine a position of an object in a first operating area and a second position measurement configuration to determine a position of the object in a second operating area; and a control unit configured to control a position of the object, the control unit including a first and a second controller, the first and second controllers being arranged to convert an input signal representing a position of the object to a respectively first and second control signal, the control unit being arranged to determine a combined control signal for controlling the position of the object in an overlapping area of the first and second operating area, wherein the combined control signal is obtained by applying a continuous weight function to the first and second control signal.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.