Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for performing speaker verification. A system configured to practice the method receives a request to verify a speaker, generates a text challenge that is unique to the request, and, in response to the request, prompts the speaker to utter the text challenge. Then the system records a dynamic image feature of the speaker as the speaker utters the text challenge, and performs speaker verification based on the dynamic image feature and the text challenge. Recording the dynamic image feature of the speaker can include recording video of the speaker while speaking the text challenge. The dynamic feature can include a movement pattern of head, lips, mouth, eyes, and/or eyebrows of the speaker. The dynamic image feature can relate to phonetic content of the speaker speaking the challenge, speech prosody, and the speaker's facial expression responding to content of the challenge.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for combining frame and segment level processing, via temporal pooling, for phonetic classification. A frame processor unit receives an input and extracts the time-dependent features from the input. A plurality of pooling interface units generates a plurality of feature vectors based on pooling the time-dependent features and selecting a plurality of time-dependent features according to a plurality of selection strategies. Next, a plurality of segmental classification units generates scores for the feature vectors. Each segmental classification unit (SCU) can be dedicated to a specific pooling interface unit (PIU) to form a PIU-SCU combination. Multiple PIU-SCU combinations can be further combined to form an ensemble of combinations, and the ensemble can be diversified by varying the pooling operations used by the PIU-SCU combinations. Based on the scores, the plurality of segmental classification units selects a class label and returns a result.
Abstract:
A method and apparatus for using a classifier for processing a query are disclosed. For example, the method receives a query from a user, and processes the query to locate one or more documents in accordance with a search engine having a discriminative classifier, wherein the discriminative classifier is trained with a plurality of artificial query examples. The method then presents a result of the processing to the user.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for combining frame and segment level processing, via temporal pooling, for phonetic classification. A frame processor unit receives an input and extracts the time-dependent features from the input. A plurality of pooling interface units generates a plurality of feature vectors based on pooling the time-dependent features and selecting a plurality of time-dependent features according to a plurality of selection strategies. Next, a plurality of segmental classification units generates scores for the feature vectors. Each segmental classification unit (SCU) can be dedicated to a specific pooling interface unit (PIU) to form a PIU-SCU combination. Multiple PIU-SCU combinations can be further combined to form an ensemble of combinations, and the ensemble can be diversified by varying the pooling operations used by the PIU-SCU combinations. Based on the scores, the plurality of segmental classification units selects a class label and returns a result.
Abstract:
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
Abstract:
A method and apparatus for using a classifier for processing a query are disclosed. For example, the method receives a query from a user, and processes the query to locate one or more documents in accordance with a search engine having a discriminative classifier, wherein the discriminative classifier is trained with a plurality of artificial query examples. The method then presents a result of the processing to the user.
Abstract:
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for performing speaker verification. A system configured to practice the method receives a request to verify a speaker, generates a text challenge that is unique to the request, and, in response to the request, prompts the speaker to utter the text challenge. Then the system records a dynamic image feature of the speaker as the speaker utters the text challenge, and performs speaker verification based on the dynamic image feature and the text challenge. Recording the dynamic image feature of the speaker can include recording video of the speaker while speaking the text challenge. The dynamic feature can include a movement pattern of head, lips, mouth, eyes, and/or eyebrows of the speaker. The dynamic image feature can relate to phonetic content of the speaker speaking the challenge, speech prosody, and the speaker's facial expression responding to content of the challenge.
Abstract:
A method and apparatus for using a classifier for processing a query are disclosed. For example, the method receives a query from a user, and processes the query to locate one or more documents in accordance with a search engine having a discriminative classifier, wherein the discriminative classifier is trained with a plurality of artificial query examples. The method then presents a result of the processing to the user.