Abstract:
Multi-video registration for video synthesis is described. In example implementations, at least one computing device synthesizes multiple videos to create merged images using an automated mechanism to register the multiple videos. The computing device obtains multiple videos with each video including a sequence of multiple frames. Using multiple camera poses determined in a three-dimensional scene reconstruction, respective frames of respective ones of the multiple videos are linked to produce linked frames. The computing device aligns the linked frames to produce aligned frames using point guidance that is based on the multiple spatial points identified in the 3D scene reconstruction. For example, pixels in each of the linked frames that correspond to a same spatial point of the three-dimensional scene reconstruction can be used to align the linked frames at a pixel level. Based on the aligned frames, the computing device creates at least one merged image to synthesize the multiple videos.
Abstract:
Techniques for removing artifacts, such as shadows, from document images are described. A shadow map is generated for a digital image by first determining local background colors using clusters of local pixel intensities. Then, a global reference background color is selected from all pixel intensities of the digital image. Next, a per-pixel scaling factor is determined that maps the local background colors to the global reference background color, which applies localized adjustment to the digital image to remove local shadow.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed towards automatic selection of regions for blur kernel estimation. In one embodiment, a process divides a blurred image into a regions. From these regions a first region and a second region can be selected based on a number of edge orientations within the selected regions. A first blur kernel can then be estimated based on the first region and a second blur kernel can be estimated for the second region. The first and second blur kernel can then be utilized to respectively deblur a first and second portion of the image to produce a deblurred image. Other embodiments may be described and/or claimed.
Abstract:
A computer-implemented method and apparatus are described for deblurring an image. The method may include accessing the image that has at least one blurred region and, automatically, without user input, determining a first value for a first size for a blur kernel for the at least one blurred region. Thereafter, automatically, without user input, a second value for a second size for the blur kernel is determined for the at least one blurred region. A suggested size for the blur kernel is then determined based on the first value and the second value.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.
Abstract:
Methods and systems for dehazing images with increased accuracy and reduced error enhancement. In particular, one or more embodiments estimate a transmission map representing an amount of unscattered light reflected from objects in an input image. One or more embodiments refine the transmission map to obtain transmission information consistent with a depth of the objects in the input image. One or more embodiments also determine a radiance gradient for the input image. One or more embodiments generate an output image from the input image by removing haze based on the refined transmission map and preventing error enhancement based on the determined radiance gradient.
Abstract:
Techniques are disclosed for removing haze from an image or video by constraining the medium transmission used in a haze image formation model. In particular, a de-hazed scene, which is a function of a medium transmission, is constrained to be greater than or equal to a fractionally scaled variant of the input image. The degree to which the input image is scaled can be selected manually or by using machine learning techniques on a pixel-by-pixel basis to achieve visually pleasing results. Next, the constrained medium transmission is filtered to be locally smooth with sharp discontinuities along image edge boundaries to preserve scene depth. This filtering results in a prior probability distribution that can be used for haze removal in an image or video frame. The input image is converted to gamma decoded sRGB linear space prior to haze removal, and gamma encoded into sRGB space after haze removal.
Abstract:
A blurred image having a spatially invariant motion blur resulting from camera motion during image capture is deblurred based on one or more light streaks identified and extracted from the blurred image. A blur kernel for the blurred image is estimated by performing an optimization procedure having a blur kernel constraint based at least in part on the light streak. One or more light streaks can in some embodiments be posed as the blur kernel constraint. A modeled light streak may be defined as a convolution between the blur kernel and a simulated light source, with the optimization procedure being to minimize a distance between the modeled light streak and the corresponding identified light streak from the blurred image.
Abstract:
Methods for enhancing images with increased efficiency include using a discriminative index tree to expedite image optimization processes. The discriminative index tree indexes patch-based image priors for modifying an image by using classifiers determined by exploiting a structure of the patch-based image priors. The discriminative index tree quickly and efficiently parses a space of patch-based image patches to determine approximate dominant patch-based image priors for the space of image patches. To further improve the efficiency of the discriminative index tree, one or more embodiments can limit a number of potential patch-based image priors from which a dominant patch-based image prior is selected.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.