Multi-Video Registration for Video Synthesis

    公开(公告)号:US20180240279A1

    公开(公告)日:2018-08-23

    申请号:US15439767

    申请日:2017-02-22

    Abstract: Multi-video registration for video synthesis is described. In example implementations, at least one computing device synthesizes multiple videos to create merged images using an automated mechanism to register the multiple videos. The computing device obtains multiple videos with each video including a sequence of multiple frames. Using multiple camera poses determined in a three-dimensional scene reconstruction, respective frames of respective ones of the multiple videos are linked to produce linked frames. The computing device aligns the linked frames to produce aligned frames using point guidance that is based on the multiple spatial points identified in the 3D scene reconstruction. For example, pixels in each of the linked frames that correspond to a same spatial point of the three-dimensional scene reconstruction can be used to align the linked frames at a pixel level. Based on the aligned frames, the computing device creates at least one merged image to synthesize the multiple videos.

    Automatically determining the size of a blur kernel
    4.
    发明授权
    Automatically determining the size of a blur kernel 有权
    自动确定模糊内核的大小

    公开(公告)号:US09576220B2

    公开(公告)日:2017-02-21

    申请号:US15045070

    申请日:2016-02-16

    Abstract: A computer-implemented method and apparatus are described for deblurring an image. The method may include accessing the image that has at least one blurred region and, automatically, without user input, determining a first value for a first size for a blur kernel for the at least one blurred region. Thereafter, automatically, without user input, a second value for a second size for the blur kernel is determined for the at least one blurred region. A suggested size for the blur kernel is then determined based on the first value and the second value.

    Abstract translation: 描述了用于去图像的计算机实现的方法和装置。 该方法可以包括访问具有至少一个模糊区域的图像,并且在没有用户输入的情况下,自动确定用于至少一个模糊区域的模糊核心的第一尺寸的第一值。 此后,自动地,在没有用户输入的情况下,为至少一个模糊区域确定用于模糊核的第二大小的第二值。 然后基于第一值和第二值确定模糊内核的建议大小。

    Camera calibration and automatic adjustment of images

    公开(公告)号:US09519954B2

    公开(公告)日:2016-12-13

    申请号:US14798285

    申请日:2015-07-13

    Abstract: Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.

    Dehazing photos and videos using visual artifact suppression
    6.
    发明授权
    Dehazing photos and videos using visual artifact suppression 有权
    使用视觉神器抑制去除照片和视频

    公开(公告)号:US09508129B1

    公开(公告)日:2016-11-29

    申请号:US14935299

    申请日:2015-11-06

    Inventor: Jue Wang Chen Chen

    Abstract: Methods and systems for dehazing images with increased accuracy and reduced error enhancement. In particular, one or more embodiments estimate a transmission map representing an amount of unscattered light reflected from objects in an input image. One or more embodiments refine the transmission map to obtain transmission information consistent with a depth of the objects in the input image. One or more embodiments also determine a radiance gradient for the input image. One or more embodiments generate an output image from the input image by removing haze based on the refined transmission map and preventing error enhancement based on the determined radiance gradient.

    Abstract translation: 提高精度和减少误差增强的图像清除方法和系统。 具体地,一个或多个实施例估计表示从输入图像中的对象反射的不散射光量的透射图。 一个或多个实施例细化传输图以获得与输入图像中的对象的深度一致的传输信息。 一个或多个实施例还确定输入图像的辐射梯度。 一个或多个实施例通过基于精确的传输图去除雾度来产生来自输入图像的输出图像,并且基于确定的辐射梯度来防止误差增强。

    Image haze removal using fast constrained transmission estimation
    7.
    发明授权
    Image haze removal using fast constrained transmission estimation 有权
    使用快速约束传输估计的图像雾度去除

    公开(公告)号:US09508126B2

    公开(公告)日:2016-11-29

    申请号:US14624116

    申请日:2015-02-17

    CPC classification number: G06T3/40 G06T5/003 G06T5/10 G06T2207/10024

    Abstract: Techniques are disclosed for removing haze from an image or video by constraining the medium transmission used in a haze image formation model. In particular, a de-hazed scene, which is a function of a medium transmission, is constrained to be greater than or equal to a fractionally scaled variant of the input image. The degree to which the input image is scaled can be selected manually or by using machine learning techniques on a pixel-by-pixel basis to achieve visually pleasing results. Next, the constrained medium transmission is filtered to be locally smooth with sharp discontinuities along image edge boundaries to preserve scene depth. This filtering results in a prior probability distribution that can be used for haze removal in an image or video frame. The input image is converted to gamma decoded sRGB linear space prior to haze removal, and gamma encoded into sRGB space after haze removal.

    Abstract translation: 公开了通过限制在雾度图像形成模型中使用的介质传输来从图像或视频中去除雾度的技术。 特别地,作为中等传输的函数的去雾化场景被限制为大于或等于输入图像的分数缩放变体。 可以手动选择输入图像的缩放程度,或者通过逐个像素地使用机器学习技术来获得视觉上令人满意的结果。 接下来,受限介质传输被过滤以局部平滑,沿着边缘边缘具有尖锐的不连续性,以保持场景深度。 该过滤导致可用于图像或视频帧中的雾度去除的先验概率分布。 在去除雾度之前,将输入图像转换为伽玛解码的sRGB线性空间,并在除去雾度之后将伽马编码为sRGB空间。

    Image deblurring based on light streaks
    8.
    发明授权
    Image deblurring based on light streaks 有权
    基于光条纹的图像去模糊

    公开(公告)号:US09392173B2

    公开(公告)日:2016-07-12

    申请号:US14105554

    申请日:2013-12-13

    CPC classification number: H04N5/23267 G06T5/003

    Abstract: A blurred image having a spatially invariant motion blur resulting from camera motion during image capture is deblurred based on one or more light streaks identified and extracted from the blurred image. A blur kernel for the blurred image is estimated by performing an optimization procedure having a blur kernel constraint based at least in part on the light streak. One or more light streaks can in some embodiments be posed as the blur kernel constraint. A modeled light streak may be defined as a convolution between the blur kernel and a simulated light source, with the optimization procedure being to minimize a distance between the modeled light streak and the corresponding identified light streak from the blurred image.

    Abstract translation: 基于从模糊图像识别和提取的一条或多条光条纹,在图像拍摄期间具有由相机运动产生的空间不变运动模糊的模糊图像被去毛刺。 用于模糊图像的模糊内核通过至少部分地基于光条纹执行具有模糊内核约束的优化过程来估计。 在一些实施例中,可以提供一个或多个光条纹作为模糊核心约束。 模拟的光条可以被定义为模糊核与模拟光源之间的卷积,优化过程是将建模的条纹与从模糊图像相应的识别光条纹之间的距离最小化。

    DISCRIMINATIVE INDEXING FOR PATCH-BASED IMAGE ENHANCEMENT
    9.
    发明申请
    DISCRIMINATIVE INDEXING FOR PATCH-BASED IMAGE ENHANCEMENT 有权
    基于PATCH的图像增强的分辨率指标

    公开(公告)号:US20150310295A1

    公开(公告)日:2015-10-29

    申请号:US14265012

    申请日:2014-04-29

    Abstract: Methods for enhancing images with increased efficiency include using a discriminative index tree to expedite image optimization processes. The discriminative index tree indexes patch-based image priors for modifying an image by using classifiers determined by exploiting a structure of the patch-based image priors. The discriminative index tree quickly and efficiently parses a space of patch-based image patches to determine approximate dominant patch-based image priors for the space of image patches. To further improve the efficiency of the discriminative index tree, one or more embodiments can limit a number of potential patch-based image priors from which a dominant patch-based image prior is selected.

    Abstract translation: 增加效率的图像增强方法包括使用鉴别索引树来加快图像优化过程。 鉴别索引树通过使用通过利用基于补丁的图像先验的结构确定的分类器来索引用于修改图像的基于补丁的图像优先级。 鉴别索引树快速有效地解析基于补丁的图像补丁的空间,以确定图像补丁空间的大致显着的基于补丁的图像先验。 为了进一步提高辨别性索引树的效率,一个或多个实施例可以限制多个潜在的基于补片的图像先验,从中选择基于主要的基于图块的图像先验。

    Automatic Adjustment of Images using a Homography
    10.
    发明申请
    Automatic Adjustment of Images using a Homography 审中-公开
    使用同位素图像自动调整图像

    公开(公告)号:US20150215531A1

    公开(公告)日:2015-07-30

    申请号:US14681913

    申请日:2015-04-08

    Abstract: Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.

    Abstract translation: 用于数字图像自动竖直调整的技术和设备。 描述了自动立式调节技术,其可以提供用于矫正输入图像中的倾斜特征的自动化方法,以提高其感知质量。 这种校正可以被称为直立调节。 可以在直立式调整中使用基于人类感知的一组标准。 描述了实现优化框架的重投影技术,其基于标准产生用于调整的最佳单应性,并且根据由优化生成的新的相机参数来调整图像。 描述了基于优化的相机校准技术,其同时估计图像的消失线和点以及相机参数; 例如,校准技术可以用于生成输入到重投影技术的相机参数和消失点和线的估计。

Patent Agency Ranking