Abstract:
An integrated device package is disclosed. The package can include a carrier, such as first integrated device die, and a second integrated device die stacked on the first integrated device die. The package can include a buffer layer which coats at least a portion of an exterior surface of the first integrated device die and which is disposed between the second integrated device die and the first integrated device die. The buffer layer can comprise a pattern to reduce transmission of stresses between the first integrated device die and the second integrated device die.
Abstract:
A housing for integrated devices that includes an air-release mechanism is disclosed. This is achieved, in various embodiments, by forming a vent hole in a package substrate, and arranging a package lid over the package substrate. The vent hole allows air to be released from within the cavity package, thereby ensuring that the package lid remains stably affixed to the package substrate despite increased temperatures during processing. The vent hole may be sealed upon mounting the package onto a mounting substrate.
Abstract:
An integrated device package is disclosed. The package can include a package substrate comprising a composite die pad having an upper surface and a lower surface spaced from the upper surface along a vertical direction. The composite die pad can include an insulator die pad and a metal die pad. The insulator die pad and the metal die pad can be disposed adjacent one another along the vertical direction. The substrate can include a plurality of leads disposed about at least a portion of a perimeter of the composite die pad. An integrated device die can be mounted on the upper surface of the composite die pad.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
Vertical mount packages and methods for making the same are disclosed. A method for manufacturing a vertical mount package includes providing a device substrate with a plurality of device regions on a front surface, and a plurality of through-wafer vias. MEMS devices or integrated circuits are formed or mounted onto the device regions. A capping substrate having recesses is mounted over the device substrate, enclosing the device regions within cavities defined by the recesses. A plurality of aligned through-wafer contacts extend through the capping substrate and the device substrate. The device substrate and capping substrate can be singulated by cutting through the aligned through-wafer contacts, with the severed through-wafer contacts forming vertical mount leads. A vertical mount package includes a device sealed between a device substrate and a capping substrate. At least of the side edges of the package includes exposed conductive elements for vertical mount leads.
Abstract:
Various embodiments of an integrated device package are disclosed herein. The package may include a leadframe having a first side and a second side opposite the first side. The leadframe can include a plurality of leads surrounding a die mounting region. A first package lid may be mounted on the first side of the leadframe to form a first cavity, and a first integrated device die may be mounted on the first side of the leadframe within the first cavity. A second integrated device die can be mounted on the second side of the leadframe. At least one lead of the plurality of leads can provide electrical communication between the first integrated device die and the second integrated device die.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
Various embodiments of an integrated device package are disclosed herein. The package may include a leadframe having a first side and a second side opposite the first side. The leadframe can include a plurality of leads surrounding a die mounting region. A first package lid may be mounted on the first side of the leadframe to form a first cavity, and a first integrated device die may be mounted on the first side of the leadframe within the first cavity. A second integrated device die can be mounted on the second side of the leadframe. At least one lead of the plurality of leads can provide electrical communication between the first integrated device die and the second integrated device die.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
An integrated device package is disclosed. The package can include a carrier, such as first integrated device die, and a second integrated device die stacked on the first integrated device die. The package can include a buffer layer which coats at least a portion of an exterior surface of the first integrated device die and which is disposed between the second integrated device die and the first integrated device die. The buffer layer can comprise a pattern to reduce transmission of stresses between the first integrated device die and the second integrated device die.