Abstract:
A catalyst which consists of a carrier and a catalytically active oxide material applied to the surface of the carrier is prepared by a process in which the carrier is first moistened with, as an adhesive liquid, an aqueous solution of an organic substance boiling at above 100.degree. C. at atmospheric pressure and a layer of active oxide material is then bonded to the surface of the moistened carrier by bringing it into contact with dry, finely divided active oxide material and the adhesive liquid is then removed from the moistened carrier coated with active oxide material.
Abstract:
In a process for the preparation of catalytically active poly-metal oxide materials containing Mo and V, a catalyst intermediate is calcined at from 300.degree. to 450.degree. C. in a gas atmosphere which, in addition to inert gases and/or steam, consists of from 0.5 to 4% by volume of O.sub.2 and, averaged over the calcination time, from 1 to 8% by volume of NH.sub.3.
Abstract:
Multimetal oxide compositions which comprise, as basic constituents, the elements Mo, V, W, Cu and Ni in oxidic form in certain molar ratios, and the preparation of these multimetal oxide compositions, and their use as catalysts for the gas-phase catalytical oxidation of acrolein to acrylic acid.
Abstract:
Multimetal oxide compositions which comprise, as basic constituents, the elements Mo, V, W, Cu and Ni in oxidic form in certain molar ratios, and the preparation of these multimetal oxide compositions, and their use as catalysts for the gas-phase catalytical oxidation of acrolein to acrylic acid.
Abstract:
A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 &mgr;m, and having a specific catalytic surface area of from 20 to 30 m2/g and an abrasion of
Abstract:
A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 .mu.m, and having a specific catalytic surface area of from 20 to 30 m.sup.2 /g and an abrasion of
Abstract:
A process for regenerating spent multimetal oxide oxidation catalysts from the catalytic gas-phase oxidation of lower organic compounds and which, in fresh form, contain as basic constituents the elements Mo, W, V and Cu in oxidic form, by the action of oxidizing agents or means and solubilizing, aqueous ammonia to which acetic acid and/or the ammonium salt thereof has been added, with subsequent drying and calcination, comprises quantitatively determining the content of metallic constituents during the process and making this content up to the respective original value.
Abstract:
The array of heterogeneous catalysts and/or their precursors, is made up of a body which has, preferably parallel, through-channels and in which at least n channels comprise n different heterogeneous catalysts and/or their precursors, where n is 2, preferably 10, particularly preferably 100, in particular 1000, especially 10,000. A process for preparing arrays comprising the following steps: a1) preparing solutions, emulsions and/or dispersions of elements and/or element compounds of the elements present in the catalyst and/or catalyst precursor and, if appropriate preparing dispersions of inorganic support materials, a2) if appropriate introducing adhesion promoters, binders, viscosity regulators, pH regulators and/or solid inorganic supports into the solutions, emulsions and/or dispersions, a3) simultaneously or successively coating the channels of the body with the solutions, emulsions and/or dispersions, a predetermined amount of the solutions, emulsions and/or dispersions being introduced into each channel to obtain a predetermined composition and a4) if appropriate heating the coated body in the presence or absence of inert gases or reactive gases to a temperature in the range from 20 to 1500° C. to dry, with or without sintering or calcining, the catalysts and/or catalyst precursors.
Abstract:
A coated catalyst whose coating of active composition is a multimetal oxide comprising the elements Mo, V and Te and/or Sb can be used for the gas-phase catalytic oxidation of propane to acrylic acid.
Abstract:
A process for the catalytic gas-phase oxidation of propene to acrylic acid, in which the reaction gas starting mixture is oxidized, with a high propene loading, in a first reaction stage, over a first fixed-bed catalyst which is housed in two successive reaction zones A, B, the reaction zone B being kept at a higher temperature than the reaction zone A, and the acrolein-containing product gas mixture of the first reaction stage is then oxidized in a second reaction stage, with a high acrolein loading, over a second fixed-bed catalyst which is housed in two successive reaction zones C, D, the reaction zone D being kept at a higher temperature than the reaction zone C.