Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have an array of pixels that display images to a user. Backlight structures may provide the array of pixels with backlight illumination at a backlight illumination level. The backlight structures may have a light source with an array of light-emitting diodes and photoluminescent material that is pumped by pump light from the light-emitting diodes. The backlight illumination may experience color variations as a function of the backlight illumination level. Circuitry in the electronic device may be used to implement a backlight level color compensator. The backlight level color compensator may apply color correction factors to the image data of the displayed images to compensate for variations in color of the image data due to variations in backlight illumination level and operating temperature.
Abstract:
An electronic device may include a display having an array of display pixels. The display pixels may include red, green, blue, and white subpixels. Pixel mapping circuitry may convert red-green-blue pixel values in a frame of display data to red-green-blue-white pixel values using a brightness adjustment factor. The brightness adjustment factor may be determined based on ambient lighting conditions. The brightness adjustment factor be determined such that any color distortion resulting from applying the brightness adjustment factor is maintained under a just-noticeable-difference (JND) threshold. White subpixel values may be determined based on the brightness adjustment factor. Pixel rendering circuitry may be used to render red-green-blue-white pixel values onto the physical pixel structure. When a display pixel does not include a subpixel of a particular color, the pixel rendering circuitry may compensate for the missing color using nearby subpixels.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
A display calibration system may include a first electronic device that includes an ambient light sensor and a display to be calibrated in a second electronic device. The first electronic device may generate test patterns to be displayed on the display. The ambient light sensor may receive light emitted from the display based on the test patterns to generate display color space data. The first electronic device may generate calibration data for the display based on the display color space data and a target reference color space. The second electronic device may store the calibration data and use the calibration data to generate more accurate images. Because the first electronic device may include other functionalities other display calibration, specialized display calibration equipment may be omitted. Additionally, a third electronic device that acts as an intermediary between the first and second electronic devices.
Abstract:
A display panel is initialized to a native state where no color corrections are applied. A native response of the display panel is measured in the native state. One or more calibration operations for the display panel are performed based on the measured native response and calibration data is generated. The generated calibration data is stored in a timing controller (TCON) chip of the display panel. One or more chromaticity values of the display panel are measured while driving the display panel in a calibrated state based on the generated calibration data. The measured chromaticity value of the display panel is stored as Extended Display Identification Data (EDID) or DisplayID data in the TCON.
Abstract:
A method and user interface for direct setting of black and white points. Black point is set using a slider and matching of gray shades. White point setting is performed by having a setting object move within a defined region, such as a square or circle, with the area where the setting object moves being adjusted dynamically based on the location of the setting object with respect to the defined region. When the area is the desired white, the setting is complete. Preferably the defined region has a varying color border to allow a reference for the user in moving the setting object. A more detailed setting of gray levels can be accomplished by providing a gray scale with reference points. Each reference point has an associated white point setting area, so that settings are developed for each reference point. Settings at other locations are determined by interpolation or extrapolation.
Abstract:
An electronic device may include a display having an array of display pixels. Each display pixel may include a red subpixel, a green subpixel, a blue subpixel, and a white subpixel. The display may be controlled using display control circuitry. The display control circuitry may convert frames of display data from a red-green-blue (RGB) color space to a red-green-blue-white (RGBW) color space. The display control circuitry may supply data signals corresponding to a frame of display data in the RGBW color space to the array of display pixels. A frame of display data may be converted from the RGB color space to the RGBW color space based on an amount of color saturation in the frame of display data, based on information identifying what code is running on control circuitry in the electronic device, and/or based on ambient lighting condition information.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
A display may store extended display identification data for communicating the capabilities of the display to a source device such as a graphics processing unit. The extended display identification data may include a red primary color value, a green primary color value, and a blue primary color value. The primary color values in the extended display identification data may be determined during manufacturing. For example, a light sensor may measure the native primary colors of the display, and calibration computing equipment may determine if the native primary colors of the display are within a target color gamut. If the native primary colors of the display are outside of the target color gamut by an amount larger than a threshold, the primary color values in the extended display identification data may be adjusted to account for the color variation.