Abstract:
A processing device executing a wide area network (WAN) accessible service receive an encrypted digital image comprising a firmware update for an embedded system of a device having a specific device serial number (DSN). The processing device additionally receives device related information from a computing device, wherein the device related information comprises the DSN of the device comprising the embedded system and a version number of a current firmware component installed on the embedded system. The processing device determines, using the device related information, that the encrypted digital image for the device is available. The processing device then provides the encrypted digital image to the computing device for use by the computing device to update a firmware version of the embedded system.
Abstract:
A processing device executing a registration service receives information identifying a first device, a second device and an application running on the first device. The processing device determines a registration technique that is supported by both the application and the second device and sends a message indicating the registration technique to at least one of the first device or the second device, wherein the application is to perform an operation associated with the first registration technique to bind the second device to the user account.
Abstract:
A device includes at least one of a mechanical component or an electrical component and an Internet enabled embedded system that controls at least one of the mechanical component or the electrical component. The Internet enabled embedded system is configured to establish a connection to a local area network (LAN), provide data to a registration service via the connection to the LAN, receive from the registration service an instruction to implement a specified registration technique, and implement the specified registration technique. The registration service is configured to bind the embedded system to a user account responsive to satisfaction of a criterion of the specified registration technique.
Abstract:
In an embodiment, a processing device receives an instruction to schedule an event associated with a remote target device, generates a schedule for the remote target device, and transmits the schedule to the remote target device. The processing device receives usage information from the remote target device and additional usage information from other remote devices. The processing device applies a machine learning algorithm to the usage information and the additional usage information to determine an update to the schedule. The processing device updates the schedule and sends the update to the remote target device.
Abstract:
A processing device executing a scheduler receives, by a device, a schedule from a remote server computing device, the schedule having a compact format that is understood by the device. The device stores the schedule and the processing device parses the schedule to identify a scheduled event. The processing device executes the scheduled event at a specified time in accordance with the schedule even in the absence of a network connection between the device and the remote server computing device.
Abstract:
A device includes at least one of a mechanical component or an electrical component and an Internet enabled embedded system that controls at least one of the mechanical component or the electrical component. The Internet enabled embedded system is configured to establish a connection to a local area network (LAN), provide data to a registration service via the connection to the LAN, receive from the registration service an instruction to implement a specified registration technique, and implement the specified registration technique. The registration service is configured to bind the embedded system to a user account responsive to satisfaction of a criterion of the specified registration technique.
Abstract:
A processing device executing an application that is logged in to a user account recognized by a registration service receives information identifying a device that has not been bound to any user account, wherein the application supports a plurality of registration techniques. The processing device identifies a registration technique supported by the device that is to be used for registration of the device. The processing device performs at least one of sending information associated with the registration technique to the device or receiving the information associated with the registration technique. The processing device sends the information associated with the registration technique to the registration service, and then receives a message from the registration service, wherein the message indicates that the information satisfied a criterion of the registration technique and comprises a notification that the device is bound to the user account.
Abstract:
A processing device executing a rules engine receives a notification of a first event on a first network-connected device. The processing device identifies a first rule associated with a first user account, wherein the first user account is further associated with the first network-connected device, and wherein the first event on the first network-connected device is an input for the first rule. The processing device determines that the first event satisfies a first criterion of the first rule and generates a first command for a second network-connected device also associated with the first user account. The processing device then transmits the first command to the second network-connected device on behalf of the first user account, wherein the first command causes the second network-connected device to perform an action.
Abstract:
A hardware module for an embedded system comprises a network adapter, a memory and a processing device. The memory stores a shared key and a key identifier (ID) associated with the shared key. The processing device is to connect to a local area network (LAN) using the network adapter. The processing device is further to receive a first notification from a computing device that is also connected to the LAN and determine whether the computing device has access to a copy of the shared key based on the key identifier (ID). Responsive to determining that the computing device has access to the copy of the shared key, the processing device is to use the shared key to generate a session key for a session with the computing device. The processing device may then encrypt communications to the computing device using the session key.
Abstract:
A device includes at least one of a mechanical component or an electrical component and an Internet enabled embedded system that controls at least one of the mechanical component or the electrical component. The Internet enabled embedded system is configured to establish a connection to a local area network (LAN), provide data to a registration service via the connection to the LAN, receive from the registration service an instruction to implement a specified registration technique, and implement the specified registration technique. The registration service is configured to bind the embedded system to a user account responsive to satisfaction of a criterion of the specified registration technique.