Abstract:
A wireless communication device (alternatively, device, WDEV, etc.) includes a processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV generates and transmits a first signal that includes a field that specifies an acceptable interference level (AIL) for concurrent communication for use by a first other WDEV to determine whether a transmission from the first other WDEV to a second other WDEV acceptably or unacceptably interferes with another transmission from the WDEV. Concurrent communication (e.g., from the WDEV to a third other WDEV, and from the first other WDEV to the second other WDEV) may be made when the AIL compares favorably with the AIL.
Abstract:
A wireless communication device (alternatively, device, WDEV, etc.) includes a processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV selects a resource unit (RU) from an orthogonal frequency division multiple access (OFDMA) sub-carrier plan for use in supporting communications with another WDEV. The WDEV transmits a signal to the other WDEV that includes information that specifies the RU that is selected from the OFDMA sub-carrier plan and then supports communications with the other WDEV using the RU that is selected from the OFDMA sub-carrier plan. The OFDMA sub-carrier plan includes multiple OFDMA sub-carrier sub-plans of different sized RUs and null sub-carriers.
Abstract:
A wireless communication device (alternatively, device, WDEV, etc.) includes a processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV generates an orthogonal frequency division multiple access (OFDMA) frame that includes OFDMA symbol(s) that include a set of pilots based on an OFDMA sub-carrier plan. The WDEV transmits the OFDMA frame to other WDEV(s) for use by the other WDEV(s) to perform estimation of communication pathway(s) between the WDEV and the other WDEV(s) using the set of pilots. The OFDMA sub-carrier plan includes multiple OFDMA sub-carrier sub-plans of different sized RUs including pilots.
Abstract:
A wireless communication device includes circuitry and capability to perform carrier frequency offset (CFO) estimation based on signals received from one or more other wireless communication devices. In an orthogonal frequency division multiple access (OFDMA) implementation, the wireless communication device receives two or more OFDMA symbols from first and second other wireless communication devices that include data and a copy/repeat of that data from each of the respective first and second other wireless communication devices within specified one or more sub-carriers. The sub-carrier assignment for the first and second other wireless communication devices is made such that the first wireless communication device transmits first data and the copy of that first data using a first at least one sub-carrier, and the second wireless communication device transmits second data and the copy of that second data using a second at least one sub-carrier.
Abstract:
A wireless communication device (alternatively, device) includes a processor configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. Short training field (STF) sequences are designed using a base binary sequence. In some examples, the base binary sequence is specified as [−1, −1 −1 +1 +1 +1 −1, +1, +1 +1 −1 +1 +1 −1, +1]. One STF includes the base binary sequence mapped. Another STF includes the base binary sequence followed by 0 followed by a phased rotated version of the base binary sequence. Another STF includes the base binary sequence followed by 0 followed by an inverted version of the base binary sequence.
Abstract:
Downclocking and/or adaptive sub-carriers for single user, multiple user, multiple access, and/or MIMO wireless communications. Communication device operation within a wireless local area network (WLAN/WiFi) is effectuated in the frequency spectra typically associated with television broadcast channels. Operation is made on a secondary non-interfering basis to such television broadcast channels. Any desired channel bandwidth (e.g., 6 MHz, 7 MHz, 8 MHz, etc.) may be employed. Adaptation with respect to the number of data sub-carriers within different respective packets may be made in accordance with two or more respective operational modes. For example, modification of the number of data sub-carriers in different respective packets may be made to increase the signal bandwidth from a first band was to a second bandwidth. Also, appropriate frequency down-clocking of a first channel bandwidth may be performed to generate the desired channel bandwidth to be employed within an available television broadcast channel bandwidth.
Abstract:
A wireless communication device (alternatively, device) includes a processing circuitry configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. A device generates and transmits a request to send (RTS) to group (RTG) frame to other devices. In response to the RTG frame, the device receives clear to send (CTS)(s) from one or more of the other devices and generates and transmits an orthogonal frequency division multiple access (OFDMA) data frame to those one or more of the other devices based thereon. The RTG frame can include different RTSs transmitted via different channels, sub-channels, sub-carriers, etc. to the different other devices.
Abstract:
Pilot tones are included within symbols (e.g., orthogonal frequency division multiplexing (OFDM) symbols) transmitted between wireless communication devices. The pilot tones occupy fewer than all tone locations in any given symbol, and the pilot tones occupy different respective locations within different symbols. Generally, these traveling pilots are assigned to different respective tone locations in different symbols. In total, the pilot tones did not cover every single tone location within the symbols used to convey information between devices. Considering for example, when pilots occupy fewer than all tone locations, even among multiple symbols, a device may perform interpolation to generate a pilot tone estimate corresponding to a tone location not occupied by pilot tone within any symbol. Also, power or magnitude of the pilot tones themselves may be boosted or amplified relative to power magnitude of other tones within such symbols.
Abstract:
Differential feedback within multiple user, multiple access, and/or MIMO wireless communications. After full feedback signal(s) have been received by a communication device (e.g., one that is to be performing beamforming for use in subsequent signal transmission), differential feedback signal(s) are received. Those differential feedback signal(s) are employed to update the full feedback signal(s) thereby generating updated/modified full feedback signals. Over time, such updated/modified full feedback signals may subsequently be further updated based upon later received inferential feedback signal(s). Such differential feedback signaling takes advantage of time and/or frequency correlation in a communication channel to provide for reduced feedback overhead by feeding back a difference or delta (Δ) relative to a previous value. For example, instead of providing full feedback signals in each respective/successive communication, feedback overhead is reduced by providing a difference or delta (Δ).
Abstract:
Multi-channel support within single user, multiple user, multiple access, and/or MIMO wireless communications. A processor of the communication device is implemented to process a signal to generate processed signals. Also, the communication device includes multiple inverse discrete fast Fourier transform (IDFT) processors respectively to process the processed signals to generate a signal streams respectively across channels (e.g., a first of the IDFT processors is implemented to process a first processed signal to generate a first signal stream based on a fast Fourier transform (FFT) channelization across a first number of orthogonal frequency division multiplexing (OFDM) tones, and a second of the IDFT processors is implemented to process a second processed signal to generate a second signal stream based on the FFT channelization across a second number of OFDM tones). The communication device also includes communication interface(s) to transmit the signal streams to at least one additional communication device.