Abstract:
A method of transmitting feedback information is disclosed. More specifically, a mobile station (MS) receives a Protocol Data Unit (PDU) which includes a Medium Access Channel (MAC) header from a base station (BS). Thereafter, the MS determines from the received MAC header whether an extended subheader group appears after the MAC header, and also identifies a feedback request extended subheader from the extended subheader group. Lastly, the MS transmits the feedback information according to the feedback request extended subheader.
Abstract:
A method of processing data by using a plurality of antennas and by applying weight to each signal received via a corresponding antenna in a wireless communication system is disclosed. More specifically, the method includes estimating a channel matrix corresponding to the received signal and dividing columns of the channel matrix into at least two groups. Here, each group includes at least one column. Furthermore, the method includes applying a Singular Value Decomposition (SVD) scheme to each group.
Abstract:
A method of supporting a hybrid automatic retransmission request (HARQ) in an orthogonal frequency division multiplexing access (OFDMA) radio access system is disclosed. Preferably, the method comprises receiving a downlink data frame comprising a data map information element and a data burst comprising a plurality of layers, wherein each layer is encoded with a corresponding channel encoder, and wherein the data map information element is configured to support multiple antennas to achieve space time transmit diversity by providing control information associated with each one of the plurality of layers, wherein the control information comprises allocation of acknowledgement status channels corresponding to the plurality of layers, and transmitting in an uplink data frame a plurality of acknowledgement status, each acknowledgement status being associated with whether a corresponding layer of the plurality of layers is properly decoded.
Abstract:
The present invention relates to allocating a radio resource in a wireless communication system utilizing orthogonal frequency division multiplexing (OFDM). Preferably, the present invention comprises receiving in a mobile station data associated with a radio resource allocation map from a base station, wherein the radio allocation map comprises control parameters for transmitting an uplink channel, wherein the uplink channel comprises at least on OFDM tile comprising a first set of subcarriers associated with representing at least part of an n-bit data payload, and a second set of subcarriers associated with representing at least part of a non-pilot m-bit data payload wherein each subcarrier carries a modulated data, and the first and the second set of subcarriers are exclusive to each other, and transmitting the uplink channel from the mobile station to the base station.
Abstract:
A method of retransmitting a data packet in a wireless communication system having multiple antennas is disclosed. More specifically, a mobile station (MS) determines a retransmission format from a plurality of retransmission formats and then informs the determined retransmission format by which to retransmit the data packet. A 1 = [ S ~ 1 - S ~ 2 0 0 S ~ 2 S ~ 1 S ~ 3 - S ~ 4 0 0 S ~ 4 S ~ 5 ] A 2 = [ S ~ 1 - S ~ 2 S ~ 3 - S ~ 4 S ~ 2 S ~ 1 0 0 0 0 S ~ 4 S ~ 5 ] A 3 = [ S ~ 1 - S ~ 2 0 0 S ~ 2 S ~ 1 S ~ 3 - S ~ 4 S ~ 2 S ~ 1 S ~ 4 S ~ 5 ]
Abstract:
A method of feeding back channel information in an OFDM or OFDMA radio communications system is disclosed, in which a transmitting side instructs a region for measuring a downlink channel status and in which a receiving side feeds back the channel information to the transmitting side. The present invention includes the steps of transmitting instruction information instructing at least one region of at least two regions within a data frame as a signal measurement region to a receiving side and receiving the channel information estimated by a signal included in the signal measurement region instructed by the instruction information from the receiving side.
Abstract:
The present invention relates to allocating data regions in an orthogonal frequency division multiplexing access system. The present invention comprises receiving a message comprising information for locating a data region of a data map allocated to a mobile station identified in the message for transmitting and receiving information, and identifying the data region of the data map allocated to the identified mobile station by reading the received message, wherein the data region is identified independent of identifying data regions of another data map.
Abstract:
A method for preparing catalyst coating on a metal base plate comprising: thermal-spraying a layer of a-aluminum oxide nano-particles on a metal base plate using a high temperature flame powder spray gun, at a temperature of 2500-3500° C. and a pressure of 0.2-1.2 MPa; coating an aluminum sol, the weight concentration of the aluminum sol aqueous solution being 2-30%, at a pH of 0.5-4, the drying temperature being 50-150° C., the drying time being 0.5-24 hours, the calcination temperature being 200-1200° C., and the calcination time being 0.5-24 hours; immersing in an active component, the immersing temperature being 20-120° C., the duration being 0.5-24 hours, the drying temperature being 50-150° C., the drying time being 0.5-24 hours, the calcination temperature being 200-1200° C., and the calcination time being 0.5-24 hours. The method is suitable for the preparation of various catalyst coatings with active components.
Abstract:
The present invention relates to a method of making a coated substrate, and products therefrom, using a coating possessing a nanoparticle having a shell containing a hydrophilic nitrogen containing compound and a vinylic polymer having quaternary ammonium compounds, and a core made of at least a hydrophobic vinylic polymer, wherein such coated substrate exhibits antibacterial properties without the use of harmful organic preservatives.
Abstract:
A method of transmitting feedback information in a wireless communication system is disclosed. More specifically, the method comprises a mobile station (MS) which determines whether to transmit feedback information to a base station (BS) without solicitation from the BS. After determining to do so, the MS transmits a request message to request the BS to allocate an uplink resource for transmitting at least one unsolicited header and thereafter receives the uplink resource allocation from the BS. Lastly, the MS transmits the at least one unsolicited header via the allocated uplink resource.