摘要:
A method of manufacturing a solid oxide electrolyzer cell (SOEC) includes removing a binder from the SOEC using microwave radiation while the SOEC is disposed in a first zone of a furnace, and sintering the SOEC while the SOEC is disposed in a second zone of the furnace.
摘要:
A method of forming diffusion barrier layer includes providing an interconnect for a fuel cell stack, forming a glass barrier precursor layer over a Mn and/or Co containing electrically conductive contact layer on the interconnect, and heating the barrier precursor layer to precipitate crystals in the barrier precursor layer to convert the barrier precursor layer to a glass ceramic barrier layer.
摘要:
A solid oxide fuel cell (SOFC) includes a solid oxide electrolyte with a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes a ceria-based ceramic component and an electrically conductive component. Another SOFC includes a solid oxide electrolyte containing a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes an electrically conductive component and an ionically conductive component, in which the ionically conductive component includes a zirconia-based ceramic containing scandia and at least one of ceria, ytterbia and yttria.
摘要:
A method of making an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect and providing a nickel mesh in contact with a fuel side of the interconnect. Formation of a chromium oxide layer is reduced or avoided in locations between the nickel mesh and the fuel side of the interconnect. A Cr—Ni alloy or a Cr—Fe—Ni alloy is located at least in the fuel side of the interconnect under the nickel mesh.
摘要:
A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode. The electrolyte and/or electrode composition includes zirconia stabilized with (i) scandia, (ii) ceria, and (iii) at least one of yttria and ytterbia. The composition does not experience a degradation of ionic conductivity of greater than 15% after 4000 hrs at a temperature of 850° C.
摘要:
A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode having a first region located adjacent to a fuel inlet and a second region located adjacent to a fuel outlet. The anode electrode includes a cermet having a nickel containing phase and a ceramic phase. The first region of the anode electrode contains a lower ratio of the nickel containing phase to the ceramic phase than the second region of the anode electrode.
摘要:
A spring compression assembly is configured to apply a load to a stack of electrochemical cells. The assembly includes a ceramic leaf spring, a tensioner configured to apply pressure to a first side of the spring and a bottom plate located on a second side of the spring opposite the first side of the spring. The bottom plate is configured to transfer a load from the spring to the stack of electrochemical cells.
摘要:
A solid oxide fuel cell (SOFC) stack including a plurality of SOFCs and a plurality of interconnects. Each interconnect is located between two adjacent SOFCs, and each interconnect contains a Mn or Co containing, electrically conductive metal oxide layer on an air side of the interconnect. The SOFC stack also includes a barrier layer located between the electrically conductive metal oxide layer and an adjacent SOFC. The barrier layer is configured to prevent Mn or Co diffusion from the electrically conductive metal oxide layer to the adjacent SOFC.
摘要:
A method of making an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect and providing a nickel mesh in contact with a fuel side of the interconnect. Formation of a chromium oxide layer is reduced or avoided in locations between the nickel mesh and the fuel side of the interconnect. A Cr—Ni alloy or a Cr—Fe—Ni alloy is located at least in the fuel side of the interconnect under the nickel mesh.
摘要:
A method for forming a solid oxide fuel cell (SOFC) includes co-firing the anode and cathode electrode layers, which involves placing an unfired anode onto a surface during the cathode print cycle. To avoid damage to the electrolyte and cathode production cycle by the green anode ink, an abrasion resistant ink is used to print the anode electrode layer.