Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
Aspects of a method and system for compensating for distortion in a transmitter by utilizing a digital predistortion scheme with a feedback mixer configuration are presented. Aspects of the system may include an RF transmitter that enables generation of an RF output signal in response to one or more generated input signals. One or more feedback signals may be generated by performing frequency downconversion on the RF output signal within a corresponding one or more feedback mixer circuits. The generated one or more feedback signals may be inserted at a corresponding one or more insertion points in an RF receiver. Each insertion point may be between a receiver mixer circuit and corresponding circuits that generate a baseband signal based on the corresponding one of the feedback signals.
Abstract:
Aspects of a method and system for compensating for estimated distortion in a transmitter by utilizing a digital predistortion scheme with a single feedback mixer are presented. Aspects of the system may include at least one circuit that enables generation of an output signal in response to one or more generated input signals. A feedback signal may be generated within a single feedback mixer circuit that may perform a frequency mix-down operation on the generated output signal. The generated feedback signal may be inserted at one or more insertion points in a receiver. Each of the insertion points may be located between a mixer stage of the receiver, and one or more circuits that generate a baseband signal based on the generated feedback signal.
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
A system and method is provided for processing and storing captured data in a wireless communication device based on detected biometric event data. The captured data may be acquired through a data acquisition system with devices or sensors in an integrated or distributed configuration. The captured data may include multimedia data of an event with time, date and/or location stamping, and captured physiological and behavioral biometric event data in response to the event. The captured data may be dynamically stored in a data binding format or as raw data in a local host device or communicated externally to be stored in a remote host or storage. At least one user preference may be specified for linking a biometric event data to the mapped, analyzed, categorized and stored captured data in a database. Captured data may be retrieved by matching biometric event data to at least one user preference from the database.
Abstract:
Disclosed are various embodiments for transmitting radio frequency signals. A radio frequency transmitter may be configured to generate an analog signal comprising an in-phase component and a quadrature-phase component. The in-phase component and the quadrature-phase component of the analog signal may be provided to multiple radio frequency processing chains. One of the radio frequency processing chains may generate an output radio frequency signal based on the in-phase component and the quadrature-phase component.
Abstract:
A system and method providing concurrent multimode communication through multimode signal multiplexing. Various aspects of the present invention may comprise, during a first time period, transmitting a first portion of a first communication in a first communication mode in a serial wireless transmission stream. During a second time period after the first time period, a first portion of a second communication may be transmitted in a second communication mode in the serial wireless transmission stream. Also, during a third time period after the second time period, a second portion of the first communication may be transmitted in the first communication mode in the serial wireless transmission stream. In an exemplary scenario, prior to communicating various communications, transmission time may be allocated between the first and second communication modes. In another exemplary scenario, transmission may be switched between a plurality of communication modes in response to detected communication conditions.
Abstract:
A communication device, such as a smart phone, includes transmit/receive logic to cancel an interfering signal component. The interfering signal component may originate from a communication interface on the device itself. For example, transmissions from the communication interface may interfere with received signals at other communication interfaces on the device. Transmit/receive logic on others of the communication interfaces may use known characteristics of the interfering signal component to cancel the interfering signal component.
Abstract:
Dynamically splitting a job in wireless system between a processor other remote devices may involve evaluating a job that a wireless mobile communication (WMC) device may be requested to perform. The job may be made of one or more tasks. The WMC device may evaluate by determining the availability of at least one local hardware resource of the wireless mobile communication device in processing the requested job. The WMC device may apportion one or more tasks making up the requested job between the wireless mobile communication device and a remote device. The apportioning may be based on the availability of the at least one local hardware resource.
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.