Abstract:
Embodiments of the present disclosure generally relate to a system, apparatus, and method for providing anti-replay protection of data stored in a non-volatile memory device. Some embodiments describe an anti-replay protection (ARP) device that may protect an external non-volatile memory device from replay attacks.
Abstract:
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function.
Abstract:
One or more methods and systems of sharing an external memory between functional modules of an integrated circuit chip are presented. The invention provides a system and method of reducing the amount of off-chip memory utilized by one or more integrated circuit chips. In one embodiment, a method for sharing an off-chip memory among one or more on-chip functional modules comprises arbitrating the communication of data between one or more on-chip functional modules and the off-chip memory. In one embodiment, the arbitration is facilitated by using an internal data bus that is controlled by a bus arbiter control unit. In one embodiment, a system for sharing an off-chip memory between functional modules of an integrated circuit comprises a security processing module, a media access controller module, a data interface, and a data bus.
Abstract:
A method and system for secure and scalable key management for cryptographic processing of data is described herein. In the method, a General Purpose Cryptographic Engine (GPE) receives key material via a secure channel from a key server and stores the received Key encryption keys (KEKs) and/or plain text keys in a secure key cache. When a request is received from a host to cryptographically process a block of data, the requesting entity is authenticated using an authentication tag included in the request. The GPE retrieves a plaintext key or generate a plaintext using a KEK if the authentication is successful, cryptographically processes the data using the plaintext key and transmits the processed data. The system includes a key server that securely provides encrypted keys and/or key handles to a host and key encryption keys and/or plaintext keys to the GPE.
Abstract:
A mesh grid protection system is provided. The system includes assertion logic configured to transmit a first set of signals on a first set of grid lines and a second set of grid. lines. The system also includes transformation logic to transform the first set of signals to generate a second set of signals, to transmit the second set of signals on a third set of grid lines that are coupled to the first set of grid lines, and to transmit the second set of signals on a fourth set of grid lines that are coupled to the second set of grid lines. In addition, the system includes verification logic; to compare the second set of signals on the third and fourth set of grid lines to an expected set of signals.
Abstract:
A mesh grid protection system is provided. The system includes grid lines forming a mesh grid proximate to operational logic and assertion logic configured to transmit a first set of signals on a first set of grid lines. The system also includes transformation logic coupled to the grid lines and configured to receive the first set of signals and transform the first set of signals to generate a second set of signals and transmit the second set of signals on a second set of grid lines. The system further includes verification logic coupled to the transformation logic and configured to compare the second set of signals to an expected set of signals.
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
A mobile device may be operable to determine, based on a known location of the mobile device, a location for a RF communication device that communicates with the mobile device, whenever the mobile device is within proximate range of the RF communication device. The determined location for the RF communication device may be stored in a location database in a location server and/or a memory in the RF communication device. The stored location of the RF communication device may then be used to determine a location for other mobile devices that may communicate with the RF communication device and are within proximate range of the RF communication device. The RF communication device may comprise a radio-frequency identification (RFID) device and/or a near field communication (NFC) device. The determined location for the RF communication device may comprise the known location of the mobile device.
Abstract:
A system and method is provided for processing and storing captured data in a wireless communication device based on detected biometric event data. The captured data may be acquired through a data acquisition system with devices or sensors in an integrated or distributed configuration. The captured data may include multimedia data of an event with time, date and/or location stamping, and captured physiological and behavioral biometric event data in response to the event. The captured data may be dynamically stored in a data binding format or as raw data in a local host device or communicated externally to be stored in a remote host or storage. At least one user preference may be specified for linking a biometric event data to the mapped, analyzed, categorized and stored captured data in a database. Captured data may be retrieved by matching biometric event data to at least one user preference from the database.
Abstract:
One or more methods and systems of sharing an external memory between functional modules of an integrated circuit chip are presented. The invention provides a system and method of reducing the amount of off-chip memory utilized by one or more integrated circuit chips. In one embodiment, a method for sharing an off-chip memory among one or more on-chip functional modules comprises arbitrating the communication of data between one or more on-chip functional modules and the off-chip memory. In one embodiment, the arbitration is facilitated by using an internal data bus that is controlled by a bus arbiter control unit. In one embodiment, a system for sharing an off-chip memory between functional modules of an integrated circuit comprises a security processing module, a media access controller module, a data interface, and a data bus.