Abstract:
A fiber ribbon interconnect may include a fiber ribbon, a first optical connector at a first end of the fiber ribbon, and a second optical connector at a second end of the fiber ribbon. The fiber ribbon includes two or more cladding-strengthened glass optical fibers each having an outer surface. The fiber ribbon also includes a common protective coating that surrounds the outer surfaces of the two or more cladding-strengthened glass optical fibers.
Abstract:
A cell culture apparatus may include a substrate defining a well. The well may define an interior surface, an exterior surface, an upper aperture and a nadir. The substrate may define a thickness between the interior and exterior surfaces that has a thickness proximate the nadir that is greater than or equal to a thickness proximate the upper aperture.
Abstract:
A fiber optic cable includes a plurality of fusion spliced optical fibers, with a polymeric overcoating extending over a fusion splice region as well as over a stripped section of each optical fiber proximate to the fusion splice region, wherein the plurality of fusion spliced optical fibers has a non-coplanar arrangement at the fusion splice region. A method for fabricating a fiber optic cable includes fusion splicing first and second pluralities of optical fibers arranged in a respective one-dimensional array to form a plurality of fusion spliced optical fibers, and contacting the fusion splices as well as stripped sections of the fusion spliced optical fibers with polymeric material in a flowable state. Either before or after the contacting step, the method further includes altering a position of at least some of the spliced optical fibers to yield a configuration in which the plurality of fusion spliced optical fibers have a non-coplanar arrangement at the fusion splice region. The method further includes solidifying the polymeric material.
Abstract:
An optical fiber fan-out assembly includes multiple optical fibers arranged in a one-dimensional array in a transition segment in which spacing between fibers is varied from a first pitch (e.g., a buffered fiber diameter of 900 μm) to a second pitch (e.g., a coated fiber diameter of 250 μm). A polymeric material encapsulates the optical fibers in the transition segment, and the assembly further includes multiple optical fiber legs each terminated with a fiber optic connector. Optical fibers extending beyond a boundary of the polymeric material are subject to being mass fusion spliced to another group of multiple optical fibers, and the fusion splices encapsulated with polymeric material, to form a fiber optic cable assembly. Methods for fabricating multi-fiber assemblies providing fan-out functionality are further provided, and the need for furcation tubes is avoided.
Abstract:
A label-free resonant waveguide grating biosensor imager system for measuring beat patterns and dynamic mass redistribution (DMR) signals of cultured cardiomyocytes in the absence and presence of a drug molecule. The disclosure also provides a method using the imager system for analyzing the beat patterns and the DMR signals of the cardiomyocytes to assess drug-induced cardiotoxicity.
Abstract:
According to some embodiments a method of measuring the refractive index profile of a consolidated glass body having a cylindrical surface comprises the steps of: (a) forming an image of a slit behind the glass body, (b) optionally pre-scanning the cylindrical surface of the test glass body or a reference glass body and analyzing the data within a fixed window to determine the likely location of the zero-order, un-diffracted beam while ignoring other diffracted beams; (c) optionally adjusting the optical power to improve the intensity of the data within the fixed window in order to improve the analysis; (d) predicting the trajectory of the zero-order beam through the preform based on the sampling location xi (incidence position) of the light impinging on the cylindrical surface and the location at which the zero-order beam impinges on the detector; (e) measuring the cylindrical surface of a glass body while using the estimated location of the zero-order beam and adjusted optical power to set the center of a floating window and the beam power at each measurement point; (e) determining deflection angles of the exiting zero-order beam within the floating window at each sampling location; (e) calculating the refractive index profile of glass body by utilizing a transformation function which determines refractive index at each location based upon the measured deflection angle function of the beam.
Abstract:
A cell culture apparatus may include a substrate defining a well. The well may define an interior surface, an exterior surface, an upper aperture and a nadir. The substrate may define a thickness between the interior and exterior surfaces that has a thickness proximate the nadir that is greater than or equal to a thickness proximate the upper aperture.
Abstract:
A fiber optic cable includes a plurality of fusion spliced optical fibers, with a polymeric overcoating extending over a fusion splice region as well as over a stripped section of each optical fiber proximate to the fusion splice region, wherein the plurality of fusion spliced optical fibers has a non-coplanar arrangement at the fusion splice region. A method for fabricating a fiber optic cable includes fusion splicing first and second pluralities of optical fibers arranged in a respective one-dimensional array to form a plurality of fusion spliced optical fibers, and contacting the fusion splices as well as stripped sections of the fusion spliced optical fibers with polymeric material in a flowable state. Either before or after the contacting step, the method further includes altering a position of at least some of the spliced optical fibers to yield a configuration in which the plurality of fusion spliced optical fibers have a non-coplanar arrangement at the fusion splice region. The method further includes solidifying the polymeric material.
Abstract:
A fiber optic cable includes a plurality of fusion spliced optical fibers, with a polymeric overcoating extending over a fusion splice region as well as over a stripped section of each optical fiber proximate to the fusion splice region, wherein the plurality of fusion spliced optical fibers has a non-coplanar arrangement at the fusion splice region. A method for fabricating a fiber optic cable includes fusion splicing first and second pluralities of optical fibers arranged in a respective one-dimensional array to form a plurality of fusion spliced optical fibers, and contacting the fusion splices as well as stripped sections of the fusion spliced optical fibers with polymeric material in a flowable state. Either before or after the contacting step, the method further includes altering a position of at least some of the spliced optical fibers to yield a configuration in which the plurality of fusion spliced optical fibers have a non-coplanar arrangement at the fusion splice region. The method further includes solidifying the polymeric material.
Abstract:
A modal-conditioning, single-mode fiber generally includes a core portion and a cladding portion. The core portion includes a core and an inner cladding. The core comprises an outer radius r1 and a maximum relative refractive index Δ1max. The inner cladding comprises an outer radius r2 and a relative refractive index Δ2. The cladding portion surrounds the core portion and includes a low-index trench surrounding the inner cladding. The low-index trench includes an outer radius r3 and a minimum relative refractive index Δ3min. The radius r2 of the inner cladding may be greater than 12 μm and Δ1max>Δ2>Δ3min. The fiber comprises a mode field diameter MFD greater than or equal to 12 μm and less than or equal to 16 μm at a wavelength of 1310 nm and a 30 mm diameter bend loss of less than or equal to 0.5 dB/turn at 1310 nm.