Abstract:
A force transmission or transport device having a line of force transmitting elements (2), a guide (1) for guiding the line of force transmitting elements (2) along a predetermined course, and at least one drive. A tensioning drive (6) is provided at one end of a section (5) of the predetermined course. A further drive (3), or an intermitting stop (9), is provided at the other end of the section (5) for tensioning the line of force transmitting elements (2) by a tractive or a compressive load. The further drive (3) or stop (9) acts substantially without slippage on the force transmitting elements (2). The tensioning drive (6), via a friction clutch, starts slipping when the desired tension has built up.
Abstract:
A gripper for holding and conveying flat objects (P) in a firmly held manner, in particular printed material such as newspapers, magazines or brochures, includes two clamping tongues (4 and 5) which can pivot relative to one another into an open and into a closed configuration, wherein the clamping tongues (4 and 5) are pressed against one another in the closed configuration. The distal ends of at least one of the clamping tongues (4 and 5) are fitted with two elastic arms (30) that extend laterally away from the clamping tongue, in the same direction as the clamping force, a clamping jaw (10, 11) being arranged at the free end of each of the arms. The contact surfaces of the clamping jaws of at least one clamping tongue adapt to fit the contact surface of an opposite clamping jaw or a clamped object, under compression force, for example, they are mounted on the arm (30) by means of a ball joint.
Abstract:
An optical control method for use in print finishing, comprising the following steps: First, guiding a planar printed product along a conveying path past at least one optical sensor (14). Secondly, detecting an electronic image (2) by the optical sensor, wherein the electronic image (2) comprises at least one region of the printed product. Third, extracting orientation information of the printed product from the electronic image. Fourth, comparing (51) the orientation information of the printed product from the electronic image with reference orientation information, and generating at least one signal on the basis of a result of the comparison.
Abstract:
The invention relates to a cutting device for cutting continuously conveyed printed products (5). The cutting device has multiple conveying elements (3) which run around a closed path for conveying at least one single printed product (5) or printed product groups (5′). The printed products (5, 5′) are moved along their conveyance path past at least one cutting station (10). In each cutting station, at least one edge of the printed product (5) is cut by knife blades (11, 12) and counter blades (13, 14) in a shear cut. For this shear cut, according to the invention, multiple self-sharpening blades (11, 12) come into cutting engagement with at least one counter blade (13, 14). Alternatively, multiple counter blades (13, 14) come into cutting engagement with at least one self-sharpening blade (11, 12). A significant improvement in edge retention and cutting quality is achieved by means of targeted blade kinematics, blade arrangement, product guidance, and blade geometry.
Abstract:
A process and an apparatus for forming an imbricated stream of first and second printed products, in which in each case a first and a second printed product are located substantially congruently one upon the other in double imbricated formation. The first and second printed products are individually gripped alternately by an intermediate conveyor and conveyed one behind the other at a conveying spacing d. In each case a first printed product is transferred in a transfer region from the intermediate conveyor to a removal conveyor, which is designed as a belt conveyor, such that the first printed product comes to rest on the belt conveyor and overlaps the preceding printed product in an imbricated manner. A second printed product is then deposited such that it comes to rest substantially congruently on a first printed product which has already been deposited.
Abstract:
An optical control method for use in print finishing, comprising the following steps: First, guiding a planar printed product along a conveying path past at least one optical sensor (14). Secondly, detecting an electronic image (2) by the optical sensor, wherein the electronic image (2) comprises at least one region of the printed product. Third, extracting orientation information of the printed product from the electronic image. Fourth, comparing (51) the orientation information of the printed product from the electronic image with reference orientation information, and generating at least one signal on the basis of a result of the comparison.
Abstract:
An optical control method for use in print finishing, comprising the following steps: First, guiding a planar printed product (12, 13) along a conveying path past at least one optical sensor (14). Secondly, detecting an electronic image by the optical sensor (14), wherein the electronic image comprises at least one region of the printed product (12, 13). Thirdly, transferring the electronic image into a corrected image on the basis of corrective information, which converts a recording perspective of the at least one optical sensor (14) into a target perspective. Fourth, comparing the corrected image to a reference value or a reference image, and generating at least one signal (27) on the basis of a result of the comparison.
Abstract:
The invention relates to a method for monitoring and/or controlling a transport device (10) wherein a plurality of similar products (17), in particular printed products, such as newspapers, magazines or similar are held in a detachable manner by means of individual clamps (12) that are arranged in a row, one behind the other, and are transported in sequence along a transport path (19). Improved operational reliability and controllability is characterized in that a contract-free read-in or read-out tag (T1-T5, Tn) is provided on the clamps (12), and that a reading-in/reading-out device (30) is disposed in the vicinity of the respective clamp for reading-in or reading-out data in the tags of a clamp (12), and is displaced with the respective clamp (12) over a selected section of the transport path (19).
Abstract:
The invention relates to a first product (20) which supports identification information (30) and a second product (22) which, optionally, supports identification information (30′). Said first and second products are maintained and transported together by a clamp (12), such that the second printing product (22) at least partially overlaps the first printing product (20). The identification information (30) of the first printing product (20) is arranged in the edge section (26) and the identification information (30′) of the second printing product (22) is free. The printing products (22, 22) are subjected to an optical-electronic control where an image capturing device (38) captures an image of the identification information (30, 30′), when a control point is passed. The captured image is electronically processed and the result thereof is transformed into control signals.
Abstract:
An optical control method for use in print finishing, comprising the following steps: First, guiding a planar printed product (12, 13) along a conveying path past at least one optical sensor (14). Secondly, detecting an electronic image by the optical sensor (14), wherein the electronic image comprises at least one region of the printed product (12, 13). Thirdly, transferring the electronic image into a corrected image on the basis of corrective information, which converts a recording perspective of the at least one optical sensor (14) into a target perspective. Fourth, comparing the corrected image to a reference value or a reference image, and generating at least one signal (27) on the basis of a result of the comparison.