摘要:
A system resizes content within a document that includes a document segmenter that receives a document that contains content. The document segmenter analyzes the content within the document and segments the content into a plurality of object types. An object priority applicator determines a class value associated with each object type. A location scaler identifies a datum point for each object type within the document, wherein each datum point maintains a relative location to one another regardless of document resizing. An object sizing component resizes each object based at least in part upon the class value.
摘要:
A system resizes content within a document that includes a document segmenter that receives a document that contains content. The document segmenter analyzes the content within the document and segments the content into a plurality of object types. An object priority applicator determines a class value associated with each object type. A location scaler identifies a datum point for each object type within the document, wherein each datum point maintains a relative location to one another regardless of document resizing. An object sizing component resizes each object based at least in part upon the class value.
摘要:
What is disclosed is a system and method for performing a background deletion that exploits both local and global context to remove background and other white space between objects with the aim of retaining structural relationships between objects in the document. A document image is received and seams are carved through the image. Seams composed of uniform background pixels are identified. Adjacent seams containing background pixels are collected into groups of seams. The background seam groups are classified according to their widths. A target number of seams to be removed for each background seam group is then determined based on the classification. Seam groups which are wider will have at least the same or a greater target number of seams to be deleted therefrom than will seam groups of narrower widths. The document image is then resized by deleting seams from the seam groups based on the assigned target number.
摘要:
What is disclosed is a resizing method that utilizes segmentation information to classify objects found within a document and then selects the most appropriate resizing technique for each identified object. The present method employs readily available document parsers to reliably extract objects. e.g. text, background, images, graphics, etc., which compose the document. Information obtained from a document parser is utilized to identify the document components for classification. The extracted objects are then classified according to their object type. Each of classified objects are then resized using a resizing technique having been pre-selected for the object type based on their respective abilities to resize certain types of document content over other resizing techniques. The present method advantageously extends smart or content-based scaling and is especially useful for N-up or variable-information printing. The present method finds its intended uses in enhancing N-up and handout options currently provided in a variety of print-drivers.
摘要:
What is disclosed is a resizing method that utilizes segmentation information to classify objects found within a document and then selects the most appropriate resizing technique for each identified object. The present method employs readily available document parsers to reliably extract objects. e.g. text, background, images, graphics, etc., which compose the document. Information obtained from a document parser is utilized to identify the document components for classification. The extracted objects are then classified according to their object type. Each of classified objects are then resized using a resizing technique having been pre-selected for the object type based on their respective abilities to resize certain types of document content over other resizing techniques. The present method advantageously extends smart or content-based scaling and is especially useful for N-up or variable-information printing. The present method finds its intended uses in enhancing N-up and handout options currently provided in a variety of print-drivers.
摘要:
What is disclosed is a method for iterative seam selection in an image resizing system utilizing a seam carving technique. In one embodiment, an importance map is generated for a received source image. Seams are carved through the image from one edge to an opposite edge. An energy is computed for each seam based on pixel importance values. A distance is computed from each seam to a previously selected seam. A weighting for each seam is computed using a defined weighting function and the calculated seam distances. The weighting is applied to the energy of each seam produce a revised energy for each seam. A seam is selected based on the produced revised energy. The image is resized at a location of the selected seam. The process repeats until the image has been resized to a desired target output dimension. In such a manner, unnatural image resizing results are avoided.
摘要:
A system and method for resizing a digitally represented color image are presented. A color image with pixels defined by luminance and at least one chrominance value is received. For each pixel of the color image, a luminance spatial variation and respective chrominance spatial variations in the respective neighborhood of the each pixel are computed. The luminance spatial variation and the respective chrominance spatial variations are combined to produce a respective importance value for each pixel. Selected pixels are identified based upon their respective importance values and are removed by seam carving of the color image. The seam carving identifies seams of pixels based upon the respective importance values of pixels within the seams of pixels to create a resized color image. The resized color image is produced to an image output device.
摘要:
What is disclosed is a novel system and method for content-aware resizing of a digital image. To take advantage of the characteristics of various importance maps generated for the image using different operators such as, for example, gradient, entropy, probabilistic operators, and the like, a method is provided herein for combining generated pixel importance maps. The present method uses a weighted combination of pixel importance maps—one corresponding to each image operator, to produce a hybrid map for all the image. The image can then be resized based on this hybrid map. The present method provides a high degree of image resizing flexibility and has broad applicability across differing classes of images and applications such as display, printing, packaging, and other document image processing software performing document layout, image personalization, and the like.
摘要:
What is disclosed is a novel system and method for determining printer component velocity variations by analyzing multiple page test patterns. A test pattern, such as ladder chart targets, is produced that extends across multiple pages. Corresponding page sync signals are recorded and used to maintain phase coherence when analyzing scanned images associated with the multiple pages. An algorithm determines the ladder rung positions and the average photoreceptor velocity between each ladder rung on each scanned image for each page. Interpolation is used for proper phase alignment of the velocity data that spans multiple pages. The long assembly of phase coherent velocity data is then analyzed in one embodiment to determine its frequency content and to estimate the photoreceptor motion quality error sources. Based upon these estimated error sources, a trouble condition or pending maintenance problem with the printer is able to be indentified.
摘要:
A method for determining a confidence level to be used in identifying a vehicle. The method includes receiving a vehicle image, extracting a license plate image from the at least one vehicle image, determining a license plate number and associated confidence level based upon the license plate image, and comparing the associated confidence level against a confidence threshold. If the associated confidence level is below the confidence threshold, the method further includes extracting auxiliary data from the at least one vehicle image, corresponding the extracted auxiliary data and a set of stored auxiliary data, and updating the associated confidence level to produce an updated confidence level based upon the correspondence of the extracted auxiliary data and the set of stored auxiliary data.