Abstract:
A method and system for remotely determining real-time operating fuel efficiencies based on dynamic operating characteristics of a vehicle to generate an optimal refueling management approach for the vehicle by providing refueling locations and associated refueling amounts for each refueling location, to achieve improved vehicle fuel economy, is provided.
Abstract:
Systems, apparatuses, and methods herein relate to vehicle speed management. The apparatus includes a projection module structured to determine a future road load for a vehicle based on horizon data regarding an attribute of a route of the vehicle at a future location of the vehicle. The apparatus also includes a vehicle drafting module structured to determine a drafting road load for the vehicle based on drafting data regarding operation of a second vehicle. The apparatus further includes a vehicle speed management module structured to determine and provide a vehicle speed adjustment to an output device of the vehicle to at least one of facilitate and maintain a drafting arrangement between the vehicle and the second vehicle responsive to at least one of the future road load and the drafting road load.
Abstract:
Apparatuses, methods and systems including dynamic estimations of vehicle mass and road grade estimation are disclosed. One exemplary embodiment is a method including operating a vehicle system to propel a vehicle, determining with a controller a vehicle mass estimate and an uncertainty of the vehicle mass estimate, evaluating with the controller the uncertainty of the vehicle mass estimate relative to at least one criterion, if the uncertainty of the vehicle mass estimate satisfies the criterion, determining with the controller a road grade estimate, and controlling with the controller utilizing the road grade estimate at least one of a vehicle speed and an engine output.
Abstract:
Controlling a speed of a vehicle based on at least a portion of a route grade and a route distance divided into a plurality of route sections, each including at least one of a section grade and section length. Controlling the speed of the vehicle is further based on determining a cruise control speed mode for the vehicle for each of the plurality of route sections and determining a speed reference command of the vehicle based on at least one of the cruise control speed mode, the section length, the section grade, and a current speed.
Abstract:
Powertrains of hybrid electric vehicles, control systems for controlling the powertrains, and methods for controlling the powertrains are disclosed. The powertrain includes an engine, a motor/generator, a battery and a DC bus. The control system is configured to: operate the motor/generator in a first mode when the battery is connected to the DC bus; operate the motor/generator in a second mode when the battery is disconnected from the DC bus, wherein the second mode is a voltage control mode in which the motor/generator controls a voltage of the DC bus; and adjust at least one parameter of the powertrain to assist the motor/generator in controlling the voltage of the DC bus in the second mode.
Abstract:
According to one aspect of the present disclosure, a control system, apparatus, and method includes dynamic optimization of at least one of a vehicle reference speed and/or transmission gear state of a vehicle by determining current and future engine power requirements from the current and forward-looking route conditions to improve performance, drivability, and/or fuel economy of the vehicle over what is achievable through conventional gear state selection via static calibration tables and conventional shifting strategies. The selection of the vehicle reference speed and gear state can be performed independently of one another in one embodiment, and complementary of one another in another embodiment.
Abstract:
According to one aspect of the present disclosure, a control system, apparatus, and method includes dynamic optimization of at least one of a vehicle reference speed and/or transmission gear state of a vehicle by determining current and future engine power requirements from the current and forward-looking route conditions to improve performance, drivability, and/or fuel economy of the vehicle over what is achievable through conventional gear state selection via static calibration tables and conventional shifting strategies. The selection of the vehicle reference speed and gear state can be performed independently of one another in one embodiment, and complementary of one another in another embodiment.
Abstract:
A system, method, and apparatus includes management of cruise speed in anticipation of upcoming terrain changes. A cruise speed controller can be structured to predict a change in speed of vehicle in light of an upcoming terrain feature, and lead a change in reference speed to which the cruise speed controller is regulating vehicle speed to accommodate the upcoming terrain feature. In one embodiment a physics based model of the vehicle is used to predict a speed change. If predicted speed change exceeds a threshold, the cruise speed controller will initiate a change in speed to either speed up for an upcoming uphill terrain feature, or slow down for an upcoming downhill feature. In one form the distance in advance of the terrain feature as well as the velocity change profile (acceleration or deceleration) are determined by computation of a regression formula.
Abstract:
According to one aspect of the present disclosure, a control system, apparatus, and method includes dynamic optimization of at least one of a vehicle reference speed and/or transmission gear state of a vehicle by determining current and future engine power requirements from the current and forward-looking route conditions to improve performance, drivability, and/or fuel economy of the vehicle over what is achievable through conventional gear state selection via static calibration tables and conventional shifting strategies. The selection of the vehicle reference speed and gear state can be performed independently of one another in one embodiment, and complementary of one another in another embodiment.
Abstract:
A system, method, and apparatus includes management of cruise speed in anticipation of upcoming terrain changes. A cruise speed controller can be structured to predict a change in speed of vehicle in light of an upcoming terrain feature, and lead a change in reference speed to which the cruise speed controller is regulating vehicle speed to accommodate the upcoming terrain feature. In one embodiment a physics based model of the vehicle is used to predict a speed change. If predicted speed change exceeds a threshold, the cruise speed controller will initiate a change in speed to either speed up for an upcoming uphill terrain feature, or slow down for an upcoming downhill feature. In one form the distance in advance of the terrain feature as well as the velocity change profile (acceleration or deceleration) are determined by computation of a regression formula.