Quantum processor with instance programmable qubit connectivity

    公开(公告)号:US09710758B2

    公开(公告)日:2017-07-18

    申请号:US14691268

    申请日:2015-04-20

    CPC classification number: G06N99/002 G06F15/82

    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.

    Analog processor comprising quantum devices

    公开(公告)号:US11526463B2

    公开(公告)日:2022-12-13

    申请号:US17355458

    申请日:2021-06-23

    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.

    Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters

    公开(公告)号:US11836574B2

    公开(公告)日:2023-12-05

    申请号:US17234469

    申请日:2021-04-19

    CPC classification number: G06N10/00

    Abstract: Achieving orthogonal control of non-orthogonal qubit parameters of a logical qubit allows for increasing the length of a qubit chain thereby increasing the effective connectivity of the qubit chain. A hybrid qubit is formed by communicatively coupling a dedicated second qubit to a first qubit. By tuning a programmable parameter of the second qubit of a hybrid qubit, an effective programmable parameter of the hybrid qubit is adjusted without affecting another effective programmable parameter of the hybrid qubit thereby achieving orthogonal control of otherwise non-orthogonal qubit parameters. The length of the logical qubit may thus be increased by communicatively coupling a plurality of such hybrid qubits together.

    Quantum processor with instance programmable qubit connectivity

    公开(公告)号:US10891554B2

    公开(公告)日:2021-01-12

    申请号:US16258082

    申请日:2019-01-25

    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.

    Universal adiabatic quantum computing with superconducting qubits

    公开(公告)号:US10037493B2

    公开(公告)日:2018-07-31

    申请号:US14520139

    申请日:2014-10-21

    CPC classification number: G06N10/00 G11C11/44 H03K3/38 H03K19/1952

    Abstract: A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.

    Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters

    公开(公告)号:US09727823B2

    公开(公告)日:2017-08-08

    申请号:US14339289

    申请日:2014-07-23

    CPC classification number: G06N99/002

    Abstract: Achieving orthogonal control of non-orthogonal qubit parameters of a logical qubit allows for increasing the length of a qubit chain thereby increasing the effective connectivity of the qubit chain. A hybrid qubit is formed by communicatively coupling a dedicated second qubit to a first qubit. By tuning a programmable parameter of the second qubit of a hybrid qubit, an effective programmable parameter of the hybrid qubit is adjusted without affecting another effective programmable parameter of the hybrid qubit thereby achieving orthogonal control of otherwise non-orthogonal qubit parameters. The length of the logical qubit may thus be increased by communicatively coupling a plurality of such hybrid qubits together.

Patent Agency Ranking