Abstract:
A wavelength converting module includes a wavelength converting unit. The wavelength converting unit is at least made of a phosphor material. The wavelength converting unit is a solid rod-shaped structure, in which two opposite end surfaces of the rod-shaped wavelength converting unit are a light-entrance surface and a light-exit surface respectively.
Abstract:
A fluorescent color wheel includes a substrate, a working fluid, and a fluorescent powder layer. The substrate has at least one flow channel therein. The flow channel has a first end and a second end respectively adjacent to a central region and a peripheral region of the substrate. The working fluid flows in the flow channel in a gas-liquid coexistence state. The fluorescent powder layer is disposed on the substrate and located at the peripheral region. The disclosure further discloses a projector adopting the fluorescent color wheel.
Abstract:
An illumination system includes a solid-state light-emitting element and a wavelength-converting device. A first waveband light is emitted to an optical path by the solid-state light-emitting element. The wavelength-converting device is disposed on the optical path and includes a phosphor plate. The phosphor plate is a solid mixture having a phosphor agent and a binder. The weight percent of the phosphor agent is from 10 to 70, such that the first waveband light is transformed into a second waveband light. Under this circumstance, the efficiency of heat conduction of the phosphor plate is effectively enhanced, thereby enhancing the converting efficiency of the wavelength-converting device, which is strong enough to be applied to rotate with great rigidity. Meanwhile, not only the space requirement is reduced, but also the phenomena of hot spot and heat diffusion are avoided, such that the cost and difficulty of manufacturing the wavelength-converting device are significantly reduced.
Abstract:
A wavelength conversion device includes a substrate, a reflective member, and a wavelength conversion member. The reflective member is disposed on the substrate and includes a continuous-phase material and nano particles. The nano particles are distributed in the continuous-phase material. A refractive index of the continuous-phase material is different from a refractive index of the nano particles. The wavelength conversion member is disposed on the reflective member. The reflective member is configured to reflect the light converted from the wavelength conversion member to output.
Abstract:
The disclosure provides a method for regulating a light wavelength of a projection device. The method comprises the following steps. A single-color light source is provided and emits a first chromatic light. A phosphor layer is formed on an optical path of the single-color light source, so that the first chromatic light transmits the phosphor layer. The phosphor layer transforms a part of the first chromatic light to a second chromatic light, and emits the residual first chromatic light. The residual first chromatic light is further mixed with the second chromatic light to generate a third chromatic light. The wavelength of the third chromatic light is regulated by adjusting the proportion of the luminous intensity of the residual first chromatic light and the second chromatic light.
Abstract:
A fluoride fluorescent composition contains a tetravalent manganese ion and 2.7 to 7 fluorine atoms, among which the tetravalent manganese ion is doped so as to be a luminescent center. By the advantage of thermal stability of the fluoride fluorescent composition, the luminance, the purity and the quality of projection of the projector are enhanced.
Abstract:
A phosphor wheel includes a substrate, at least a phosphor agent and a plurality of vortex generators. The substrate has a first region and a second region. The second region has a plurality of openings. The phosphor agent is disposed on the first region for converting the wavelength of waveband light. Each vortex generator includes at least a guide vane. Each guide vane is disposed on the second region, and the projection, which is on the second region, of each guide vane is corresponded to one of the openings, such that a vortex is generated during a rotation of the substrate. Therefore, the efficiency of heat exchange is enhanced, the temperature of light spot is reduced, and further the output efficiency of light of the phosphor agent is increased.
Abstract:
A phosphor device of an illumination system emitting a first waveband light and having an optical path includes a first section and a first phosphor agent. The first phosphor agent is coated on the first section. The first waveband light is received and converted into a second waveband light by the first phosphor agent. The second waveband light is directed to the optical path. The range of the spectrum of the second waveband light includes at least a first color light and a second color light, so that the first color light or the second color light is separated from the second waveband light along the optical path. Therefore, the diversity of the design of the phosphor device is enhanced, the manufacturing cost and the size of product are reduced, and the color purity is enhanced.
Abstract:
A wavelength-converting device includes a first substrate, a second substrate and a first wavelength-converting material. The first substrate has a first region and a first engagement portion. The second substrate is disposed adjacent to the first substrate and having a second region and a second engagement portion. The second engagement portion and the first engagement portion have complementary shapes. The first wavelength-converting material is disposed on the second region for converting a light in a first waveband into a light in a second waveband. The light in the first waveband is transmitted through the first region, and the light in the second waveband is reflected by the second region. The first region and the second region are staggered, so that the first engagement portion and the second engagement portion are engaged and fixed with each other. As a result, the safety and stability are enhanced, and the noise is reduced.
Abstract:
An illumination device includes a solid-state light-emitting element, and a wavelength-converting device with a transmissive substrate, a phosphor layer and a reflective optical layer. The transmissive substrate has a refraction coefficient ns greater than an ambient refraction coefficient namb. The phosphor layer is disposed over a side of the transmissive substrate and the reflective optical layer is disposed over a side of the transmissive substrate opposite to the phosphor layer. The reflective optical layer has an effective refraction coefficient nr. The relation between ns, namb and nr is given by nr>2(namb2)/ns.