摘要:
A multi-level amplifier including a converter circuit being supplied with a supply voltage and operable to generate at least two output voltages, a voltage comparator circuit adapted to compare each of the output voltages with the supply voltage to generate a driving signal, and an amplifier circuit being supplied with an analog input signal, the amplifier circuit including an analog-to-digital converter coupled to a power stage driver and power stage, wherein the power stage driver receives the driving signal from the voltage comparator.
摘要:
Various system embodiments comprise at least one sensor input adapted to receive at least one sensed signal associated with a tachyarrhythmia, a feature set extractor adapted to extract at least two features from the at least one sensed signal associated with the tachyarrhythmia, a feature set generator adapted to form a feature set using the at least two features extracted by the feature set extractor, at least one generator adapted for use to selectively apply an anti-tachycardia pacing (ATP) therapy and a neural stimulation (NS) therapy, and a controller adapted to respond to the feature set. The controller is adapted to initiate the NS therapy when the feature set corresponds to criteria for applying the NS therapy to modify the tachyarrhythmia, and initiate the ATP therapy to terminate the modified tachyarrhythmia. Other aspects and embodiments are provided herein.
摘要:
A multi-level amplifier including a converter circuit being supplied with a supply voltage and operable to generate at least two output voltages, a voltage comparator circuit adapted to compare each of the output voltages with the supply voltage to generate a driving signal, and an amplifier circuit being supplied with an analog input signal, the amplifier circuit including an analog-to-digital converter coupled to a power stage driver and power stage, wherein the power stage driver receives the driving signal from the voltage comparator.
摘要:
A cardiac rhythm management (CRM) system includes an implantable medical device that delivers anti-tachyarrhythmia therapies including ATP. When a tachyarrhythmia episode is detected, the implantable medical device analyzes the morphology of a cardiac signal to determine whether and/or when to deliver an ATP therapy. In various embodiments, the implantable medical device produces morphological parameters indicative of the likeliness of success of the ATP therapy and selects an anti-tachyarrhythmia therapy mode based on the morphological parameters. In various embodiments, the implantable medical device also controls the timing of the ATP therapy delivery using morphological features of the cardiac signal to maximize the probability that the ATP therapy is delivered into an ATP window during which a tachyarrhythmia episode can be effectively terminated by pacing.
摘要:
Systems and methods provide for sensing, during an event of tachycardia, hemodynamic signals concurrently from at least two spatially separated locations within a patient, and quantifying a spatial relationship between the hemodynamic signals. Hemodynamic stability or state of the patient during the tachycardia event is determined based at least in part on the quantified spatial relationship. One or more anti-tachycardia therapies to treat the tachycardia may be selected based at least in part on the determined stability or state of patient hemodynamics, and the selected one or more anti-tachycardia therapies may be delivered to treat the tachycardia. The hemodynamic signals may comprise at least two, or a mixed combination, of cardiac impedance signals, cardiac chamber pressure signals, arterial pressure signals, heart sounds; and acceleration signals.
摘要:
A cardiac rhythm management (CRM) system includes an implantable medical device that delivers anti-tachyarrhythmia therapies including anti-tachyarrhythmia pacing (ATP) and a hemodynamic sensor that senses a hemodynamic signal. The implantable medical device includes a hemodynamic sensor-controlled closed-loop ATP system that uses the hemodynamic signal for ATP capture verification. When ATP pulses are delivered according to a selected ATP protocol to terminate a tachyarrhythmia episode, the implantable medical device performs the ATP capture verification by detecting an effective cardiac contraction from the hemodynamic signal. The ATP protocol is adjusted using an outcome of the ATP capture verification.
摘要:
The present invention discloses zeolite metal bis(imidazole) coordination polymers and preparation method thereof. The new class of zeolite coordination polymers of the present invention is a chemical compound with the following general chemical formula {[M(Blm)]×xDMF×yC2H6O×zH2O}∞, in which when M=Zn, x=0.9, y=0, z=0; when M=Cu, x=1.2, y=0, z=0; when M=Mn, x=2.0, y=0, z=0; when M=Ni, x=0.4, y=1.2, z=1.0, Blm is 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine, DMF is N,N-dimethyl formamide, H2O is water. A solvothermal method or slow diffusion is used on the compounds to obtain crystals of high purity. The coordination polymers of the present invention have good thermal stability, and have strong adsorption performance for CO2 under conditions of 0° C. and normal pressure as adsorbent materials.
摘要:
Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
摘要:
An implantable medical device delivers anti-tachyarrhythmia therapies including anti-tachycardia pacing (ATP). If a detected tachyarrhythmia is classified as a type suitable for treatment using ATP, the implantable medical device selects one of an atrial ATP (A-ATP) mode, a ventricular ATP (V-ATP) mode, and a concurrent atrio-ventricular ATP (concurrent AV-ATP) mode according to the characteristics of the detected tachyarrhythmia. The concurrent ATP mode is an ATP mode during which the atrial pacing pulses and the ventricular pacing pulses are delivered concurrently. In one embodiment, the concurrent AV-ATP mode includes a synchronized atrio-ventricular ATP (synchronized AV-ATP) mode during which atrial and ventricular pacing pulses are delivered synchronously and an independent atrio-ventricular ATP (independent AV-ATP) mode during which atrial and ventricular pacing pulses are delivered concurrently but timed independently.