Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A miniaturized fluid dispensing system for dispensing customized fluids. The dispenser may include first and second reservoirs containing constituent fluids; a drive motor; at least two pump assemblies commonly driven by the drive motor and in communication with the first and second reservoirs; first and second valve assembly in communication with the first and second pump assemblies; and a control system for selectively controlling the valve assemblies to blend and discharge a composition from the constituent fluids. The system may include a dispensing header to house the valves and to define ‘discharge’ and ‘recirculation’ flow paths for each constituent fluid. The present invention also provides a method for dispensing a fluid regimen (e.g. a plurality of compositions) by periodically blending and discharging varying compositions over time.
Abstract:
A miniaturized fluid dispensing system for dispensing customized fluids. The dispenser may include first and second reservoirs containing constituent fluids; a drive motor; at least two pump assemblies commonly driven by the drive motor and in communication with the first and second reservoirs; first and second valve assembly in communication with the first and second pump assemblies; and a control system for selectively controlling the valve assemblies to blend and discharge a composition from the constituent fluids. The system may include a dispensing header to house the valves and to define ‘discharge’ and ‘recirculation’ flow paths for each constituent fluid. The present invention also provides a method for dispensing a fluid regimen (e.g. a plurality of compositions) by periodically blending and discharging varying compositions over time.
Abstract:
The present invention relates to a method of detecting and locating fresh water springs at sea essentially by taking salinity measurements and by methods and installations for collecting the fresh water. The collection installations comprise an immersed bell-shaped reservoir (10) containing and trapping the fresh water (2) in its top portion, and a pumping system for taking fresh water (2) and delivering the fresh water (2) via a delivery pipe (12), characterized in that the circumference of the bottom end (102) of the reservoir (10) and/or the circumference of the bottom end (61) of a chimney (6) inside the reservoir (10) and open at its top end and surrounding the fresh water resurgence (21) in part and preferably in full, follow(s) closely the outline of the relief of the bottom (4) of the sea so as to provide leakproofing between the circumference(s) and the bottom (4) of the sea.