摘要:
Provided is an optical coupler including a substrate, a buffer layer on the substrate, a ridge waveguide having a first side surface and a second side surface opposed to the first side surface, and a first waveguide disposed adjacent to the second side surface. The first waveguide includes a first body part and a first connecting part extending from one end of the first body part to be inserted in the ridge waveguide. The first connecting part has a width decreasing in the direction away from the second side surface, and the ridge waveguide includes an extension part extending under an upper surface of the buffer layer.
摘要:
Provided is a wavelength combiner including a slab waveguide; an output waveguide extended from the slab waveguide in a first direction; and at least one rib waveguide disposed at an interval horizontally from the output waveguide and extended from the slab waveguide in the first direction, wherein the rib waveguide is tapered in the first direction.
摘要:
Provided are an optical coupling device and a method for manufacturing the same. The optical coupling device includes a first waveguide including a first forward tapered part, a second waveguide disposed on the first waveguide and including a first reverse tapered part in a direction opposite to the first forward tapered part, and an interlayer waveguide disposed between the first and second waveguides and having a thickness corresponding to a distance between the first forward tapered part and the first reverse tapered part.
摘要:
An optical coupling device comprises an optical fiber block including a first block part and a second block part contacting with one side of the first block part, an optical fiber penetrating the optical fiber block and having an end surface exposed at a bottom surface of the optical fiber block, a semiconductor chip disposed below the optical fiber block and having an optical input/output element disposed on a top surface of the semiconductor chip to correspond with the end surface of the optical fiber, and a planarization layer disposed on the top surface of the semiconductor chip and having a recess region. A bottom surface of the first block part has a higher level than that of the second block part. The bottom surface of the second block part contacts with a bottom of the recess region. The optical fiber is optically coupled with the optical input/output element.
摘要:
Provided are an optical coupler and an optical device including the same. The optical coupler includes: a substrate; a buffer layer on the substrate; and an optical coupling layer including a horizontal mode expander layer and a vertical mode expander layer, wherein the horizontal mode expander layer expands in one direction on the buffer layer, and wherein the vertical mode expander layer adjusts a stepped difference between the horizontal mode expander layer and a plurality of optical transmission devices having different diameters or sectional areas and connected to both sides of the horizontal mode expander layer, and the vertical mode expander layer is disposed on a side of the horizontal mode expander layer to minimize optical loss between the plurality of optical transmission devices.
摘要:
Provided is a method of fabricating a semiconductor laser. The method includes: providing a semiconductor substrate including a first region and a second region; forming a silicon single crystal layer in the second region of the semiconductor substrate by using a selective epitaxial growth process; forming an optical coupler by using the silicon single crystal layer; and forming a laser core structure including a germanium single crystal layer in the first region of the semiconductor substrate by using a selective epitaxial growth process.
摘要:
Disclosed is a multi-channel optical signal generating apparatus, which includes a CW laser that generates a single optical signal, an optical signal processor unit that processes the single optical signal, an oscillator that generates an electrical signal, and an electrical signal processor unit that generates a modulation signal, based on the electrical signal, and the optical signal processor unit includes ‘n’ optical circulators, at least one optical intensity modulator, (m-1) optical phase modulators, and ‘n’ BiODLs, the electrical signal processor unit includes a RF power divider which divides the electrical signal, and ‘m’ RF power amplifiers, the RF power divider divides the electrical signal into ‘m’ divided electrical signals, and the optical signal processor unit modulates and outputs the single optical signal by the at least one optical intensity modulator and the (m-1) optical phase modulators, based on the ‘m’ divided electrical signals divided from the RF power divider.
摘要:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
摘要:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
摘要:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.