Abstract:
A propylene-based impact copolymer (ICP) and composition including the ICP, the ICP comprising a polypropylene homopolymer and within the range of from 10 wt % to 45 wt % of propylene copolymer based on the weight of the ICP, wherein the copolymer comprises from 20 wt % to 44 wt % ethylene, 1-butene, 1-hexene and/or 1-octene derived units and from 80 to 60 wt % propylene-derived units based on the weight of the propylene copolymer, the propylene-based impact copolymer having a Melt Flow Rate (230° C./2.16 kg) within the range of from 10 g/10 mm to 50 g/10 mm and an Elongation at Break of greater than 70%.
Abstract:
A propylene-based impact copolymer (ICP) and composition including the ICP, the ICP comprising a polypropylene homopolymer and within the range of from 10 wt % to 45 wt % of propylene copolymer based on the weight of the ICP, wherein the copolymer comprises from 20 wt % to 44 wt % ethylene, 1-butene, 1-hexene and/or 1-octene derived units and from 80 to 56 wt % propylene-derived units based on the weight of the propylene copolymer, the propylene-based impact copolymer having a Melt Flow Rate (230° C./2.16 kg) within the range of from 10 g/10 min to 50 g/10 min and an Elongation at Break of greater than 70%.
Abstract:
A polypropylene comprising a xylene soluble fraction of 1.5 wt % by weight of the polymer and soluble fraction or less, wherein the polypropylene has a melt flow rate within a range from 50 g/10 min to 500 g/10 min and a flexural modulus within a range from 1780 MPa to 2200 MPa. The polypropylene is preferably made from contacting propylene with a solid magnesium/titanium catalyst component that has been washed at least once with a solvent having a desirable solubility parameter.
Abstract:
A method is provided for polymerizing an olefin monomer in a reactor with a highly active polyolefin polymerization catalyst system. The method includes introducing a catalyst system comprising a catalyst and a catalyst activator into the reactor containing the olefin monomer with less than 10 seconds or no pre-contacting time of the catalyst and the catalyst activator prior to introducing the catalyst and the catalyst activator into the reactor. The catalyst system may have a standard adjusted catalyst activity of greater than 10 gPgcat−1hr−1.
Abstract:
A propylene-based impact copolymer having a high gloss and suitable for appliance components comprising a polypropylene homopolymer and within a range of from 6 wt % to 20 wt % of propylene copolymer based on the weight of the impact copolymer, wherein the copolymer comprises from 20 wt % to 44 wt % ethylene, and/or C4 to C10 α-olefin derived units and the remainder propylene-derived units based on the weight of the propylene copolymer, the impact copolymer having a melt flow rate (230° C./2.16 kg) within a range of from 10 g/10 min to 50 g/10 min.
Abstract:
Polypropylene resin comprising at least 50 mol % propylene, an MWD (Mw/Mn) of greater than 5, a branching index (g′) of at least 0.95, and a melt strength of at least 20 cN determined using an extensional rheometer at 190° C. A catalyst system comprising a Ziegler-Natta catalyst comprising a non-aromatic internal electron donor, and first and second external electron donors comprising different organosilicon compounds, and a method to produce a polypropylene resin comprising contacting propylene monomers at propylene polymerization conditions with the catalyst system are also disclosed.
Abstract:
A method is provided for polymerizing an olefin monomer in a reactor with a highly active polyolefin polymerization catalyst system. The method includes introducing a catalyst system comprising a catalyst and a catalyst activator into the reactor containing the olefin monomer with less than 10 seconds or no pre-contacting time of the catalyst and the catalyst activator prior to introducing the catalyst and the catalyst activator into the reactor. The catalyst system may have a standard adjusted catalyst activity of greater than 10 gPgcat−1hr−1.
Abstract:
Disclosed is a polypropylene with an MFR of at least 20 g/10 min comprising a homopolypropylene and within a range from 2 wt % to 20 wt % of a propylene-α-olefin copolymer by weight of the polypropylene, where the homopolypropylene has a MFR within a range from 30 g/10 min to 200 g/10 min, where the propylene-α-olefin copolymer comprises within a range from 30 wt % to 50 wt % α-olefin derived units by weight of the propylene-α-olefin copolymer, and has an IV within a range from 4 to 9 dL/g. The polypropylene may be obtained by combining a Ziegler-Natta catalyst having two transition metals with propylene in reactors in series to produce the homopolypropylene followed by a gas phase reactor to produce a propylene-α-olefin copolymer blended with the homopolypropylene.
Abstract:
Disclosed is a method of reducing and/or regulating the level of hydrogen in a polymerization reactor comprising contacting a first feed comprising a first amount of hydrogen with a hydrogenation catalyst prior to entering a polymerization reactor to form a second feed; then contacting the second feed having a second amount of hydrogen with monomers and a polymerization catalyst in a polymerization reactor to form a polymer. The first and second feeds may reside in a feed line from one reactor to another, a monomer feed line to the reactor, or in a recycle line to and from the same reactor.
Abstract:
Polypropylene resin comprising at least 50 mol % propylene, an MWD (Mw/Mn) of greater than 5, a branching index (g′) of at least 0.95, and a melt strength of at least 20 cN determined using an extensional rheometer at 190° C. A catalyst system comprising a Ziegler-Natta catalyst comprising a non-aromatic internal electron donor, and first and second external electron donors comprising different organosilicon compounds, and a method to produce a polypropylene resin comprising contacting propylene monomers at propylene polymerization conditions with the catalyst system are also disclosed.