Methods for fabrication, manufacture and production of an autonomous electrical power source

    公开(公告)号:US11957053B2

    公开(公告)日:2024-04-09

    申请号:US17379983

    申请日:2021-07-19

    Inventor: Clark D Boyd

    CPC classification number: H10N10/01 H01J45/00 H10N10/17

    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.

    Methods for fabrication, manufacture and production of energy harvesting components and devices

    公开(公告)号:US11139423B2

    公开(公告)日:2021-10-05

    申请号:US16780898

    申请日:2020-02-03

    Inventor: Clark D Boyd

    Abstract: A method for forming a unique, environmentally-friendly energy harvesting element is provided. A configuration of the energy harvesting element causes the energy harvesting element to autonomously generate renewable energy for use in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.

    Energy harvesting system with wavelength-selective energy scattering layer

    公开(公告)号:US10859737B2

    公开(公告)日:2020-12-08

    申请号:US16372397

    申请日:2019-04-01

    Abstract: A particularly-formed multi-layer micron-sized particle is provided that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass. The disclosed particles and material compositions uniquely implement optical light scattering techniques in energy (or light) transmissive layers that appear selectively opaque, while allowing 80+% of the energy impinging on the light incident side to pass through the layers.

    Image capturing system with wavelength-selective energy scattering layer

    公开(公告)号:US11740393B2

    公开(公告)日:2023-08-29

    申请号:US17114440

    申请日:2020-12-07

    Abstract: A particularly-formed multi-layer micron-sized particle is provided that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass. The disclosed particles and material compositions uniquely implement optical light scattering techniques in energy (or light) transmissive layers that appear selectively opaque, while allowing 80+% of the energy impinging on the light incident side to pass through the layers.

    Energy harvesting methods for providing autonomous electrical power to mobile devices

    公开(公告)号:US11554576B2

    公开(公告)日:2023-01-17

    申请号:US15416456

    申请日:2017-01-26

    Abstract: A method is provided that integrates an autonomous energy harvesting capacity in a mobile device in an aesthetically neutral manner. A unique set of structural features combine to implement a hidden energy harvesting system on a surface of the mobile device body structure or casing to provide electrical power to the mobile device, and/or to individually electrically-powered components in the mobile device. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below. The layers appear opaque when observed from a light incident side, while allowing at least 50%, and as much as 80+%, of the energy impinging on the energy or incident side to pass through the layer.

Patent Agency Ranking