Abstract:
A corona igniter (20) comprises a central electrode (22) surrounded by an insulator (26), which is surrounded by a conductive component. The conductive component includes a shell (34) and an intermediate part (36) both formed of an electrically conductive material. The intermediate part (36) is typically attached to a lower ledge (52) of the insulator outer surface (50) prior to inserting the insulator (26) into the shell (34). The shell firing end (56) is typically aligned with the lower edge and the intermediate firing end. The conductive inner diameter (Dg) is less than an insulator outer diameter (Dio) directly below the lower ledge (52) such the insulator thickness (ti) increases toward the electrode firing end (40).
Abstract:
The invention provides a system and method for controlling corona discharge and arc formations during a single corona event, i.e. intra-event control. A driver circuit provides energy to the corona igniter and detects any arc formation. In response to each arc formation, the energy provided to the corona igniter is shut off for short time. The driver circuit also obtains information about the arc formations, such as timing of the first arc formation and number of occurrences. A control unit then adjusts the energy provided to the corona igniter after the shut off time and during the same corona event based on the information about the arc formations. For example, the voltage level could be reduced or the shut-off time could be increased to limit arc formations and increase the size of the corona discharge during the same corona event.
Abstract:
A corona igniter (20) comprises a central electrode (22) surrounded by an insulator (26), which is surrounded by a conductive component. The conductive component includes a shell (34) and an intermediate part (36) both formed of an electrically conductive material. The intermediate part (36) is typically attached to a lower ledge (52) of the insulator outer surface (50) prior to inserting the insulator (26) into the shell (34). The shell firing end (56) is typically aligned with the lower edge and the intermediate firing end. The conductive inner diameter (Dg) is less than an insulator outer diameter (Dio) directly below the lower ledge (52) such the insulator thickness (ti) increases toward the electrode firing end (40).
Abstract:
A corona comprises a central electrode surrounded by an insulator, which is surrounded by a conductive component. The conductive component includes a shell and an intermediate part both formed of an electrically conductive material. The intermediate part is a layer of metal which brazes the insulator to the shell. An outer surface of the insulator presents a lower ledge, and the layer of metal can be applied to the insulator above the lower ledge prior to or after inserting the insulator into the shell. The conductive inner diameter is less than an insulator outer diameter directly below the lower ledge such the insulator thickness increases toward the electrode firing end. The insulator outer diameter is also typically less than the shell inner diameter so that the corona igniter can be forward-assembled.
Abstract:
A reversed-assembled corona igniter including an insulator, central electrode, and metal shell, wherein an outer diameter of the insulator increases adjacent a lower end of the metal shell to achieve an electrical advantage is provided. In addition, the insulator maintains strength because is not placed under tension during or after assembly, or once disposed in an engine. To achieve the increase in insulator outer diameter, the insulator includes a lower shoulder adjacent the shell firing end. An intermediate part, such as braze and/or a metal ring, is disposed between the insulator outer surface and the shell adjacent the shell firing end. To prevent tension in the insulator, the insulator can be supported at only one location between the insulator upper end and the insulator lower end, for example along the intermediate part.
Abstract:
The invention provides a system and method for controlling corona discharge. A driver circuit provides energy to the corona igniter and detects any arc formation. Optionally, in response to each arc formation, the energy provided to the corona igniter is shut off for a short time to dissipate the arc. Once the arc dissipates, the energy is applied again to restore the corona discharge. The driver circuit obtains information relating to the corona discharge, such as timing and number of arc formations. A control unit adjusts the energy provided to the corona igniter, shut-off time, or the duration of the corona event based on the information. The adjusted energy levels and duration are applied during subsequent corona events. For example, the voltage level could be reduced or the shutoff time could be increased to limit arc formations and increase the size of the corona discharge during the subsequent corona events.
Abstract:
An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 90.0 weight (wt. %), and electrically conductive metal particles in an amount of 10.0 to 50.0 wt. %, based on the total weight of the glass seal.
Abstract:
A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
Abstract:
The invention provides a system and method for controlling corona discharge and arc formations during a single corona event, i.e. intra-event control. A driver circuit provides energy to the corona igniter and detects any arc formation. In response to each arc formation, the energy provided to the corona igniter is shut off for short time. The driver circuit also obtains information about the arc formations, such as timing of the first arc formation and number of occurrences. A control unit then adjusts the energy provided to the corona igniter after the shut off time and during the same corona event based on the information about the arc formations. For example, the voltage level could be reduced or the shut-off time could be increased to limit arc formations and increase the size of the corona discharge during the same corona event.
Abstract:
An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.