Abstract:
A split gate memory device includes a semiconductor substrate and a select gate over the substrate. The select gate has a bottom portion and a top portion over the bottom portion, wherein the top portion has a top sidewall and the bottom portion has a bottom sidewall, and wherein the bottom sidewall extends beyond the top sidewall. The devices also includes a control gate adjacent the select gate, a charge storage layer located between the select gate and the control gate and between the control gate and the substrate, and an isolation region over the bottom portion of the select gate and between the top sidewall of the select gate and the charge storage layer. The bottom sidewall of the bottom portion extends to the charge storage layer.
Abstract:
A low resistance polysilicon (poly) structure includes a first poly coupled to a substrate and having a sidewall. A second poly is separated from the sidewall of the first poly and the substrate by a programming oxide. The first poly and the second poly have substantially a same planarized height above the substrate. The first poly extends from a device region to a strap region, and extends substantially parallel to a first length of the second poly. A second length of the second poly extends away from the first poly in the strap region and includes a salicide. A first diffusion region crosses the first poly and the second poly in the device region. A masked width of the first length of the second poly is defined by an etched spacer. A low resistance contact is coupled to the second length of the second poly in the strap region.
Abstract:
A low resistance polysilicon (poly) structure includes a first poly coupled to a substrate and having a sidewall. A second poly is separated from the sidewall of the first poly and the substrate by a programming oxide. The first poly and the second poly have substantially a same planarized height above the substrate. The first poly extends from a device region to a strap region, and extends substantially parallel to a first length of the second poly. A second length of the second poly extends away from the first poly in the strap region and includes a salicide. A first diffusion region crosses the first poly and the second poly in the device region. A masked width of the first length of the second poly is defined by an etched spacer. A low resistance contact is coupled to the second length of the second poly in the strap region.
Abstract:
A low resistance polysilicon (poly) structure includes a first poly coupled to a substrate and having a sidewall. A second poly is separated from the sidewall of the first poly and the substrate by a programming oxide. The first poly and the second poly have substantially a same planarized height above the substrate. The first poly extends from a device region to a strap region, and extends substantially parallel to a first length of the second poly. A second length of the second poly extends away from the first poly in the strap region and includes a salicide. A first diffusion region crosses the first poly and the second poly in the device region. A masked width of the first length of the second poly is defined by an etched spacer. A low resistance contact is coupled to the second length of the second poly in the strap region.
Abstract:
An integrated circuit including data and code non-volatile memory configuration is provided. The integrated circuit comprises a first non-volatile memory array for storing code and a second non-volatile memory array for storing data. The first non-volatile memory array comprises a plurality of first non-volatile memory cells, the first non-volatile memory cells each having a first channel width. The second non-volatile memory array comprises a plurality of second non-volatile memory cells, the second non-volatile memory cells each having a second channel width. The second channel width of the second non-volatile memory cells is larger than the first channel width of the first non-volatile memory cells. This allows the data non-volatile memory cells to have a higher transconductance than the code non-volatile memory cells.
Abstract:
An operating voltage and reference current are adjusted in a memory device. At least a portion of an array of memory cells is preconditioned to an erased state using an erase verify voltage on word lines coupled to the memory cells and a first reference current in sense amplifiers coupled to bit lines for the array. A test reference current is set for the sense amplifiers. A bitcell gate voltage is set on the word lines to a present overdrive voltage. The at least a portion of the array is read. If any of the memory cells in the at least a portion of the array are read as being programmed, the present overdrive voltage is increased until none of the memory cells in the at least a portion of the array are read as being programmed.
Abstract:
A method and memory for stressing a plurality of non-volatile memory cells is provided. The method includes entering a memory cell stressing mode and providing one or more erase stress pulses to the plurality of non-volatile memory cells; determining that a threshold voltage of at least a subset of the plurality of non-volatile memory cells has a first relationship that is either greater than or less than a first predetermined voltage; providing one or more program stress pulses to the plurality of memory cells; and determining that the threshold voltage of at least a subset of the plurality of memory cells has a second relationship to a second predetermined voltage that is different than the first relationship.