Abstract:
An image capturing device includes an image capturing section that captures first video data having a frame cycle of a first frame cycle and an exposure time for one frame shorter than the first frame cycle, an image acquisition section that acquires the first video data captured by the image capturing section, a detection section that detects a flicker of a light source in the first video data, and an image capturing frame cycle control section that controls the frame cycle of the image capturing in the image capturing section. The image capturing frame cycle control section changes the frame cycle of the first video data captured by the image capturing section from the first frame cycle to a second frame cycle, which is a frame cycle shorter than the first frame cycle, in a case where the detection section detects the flicker.
Abstract:
An image processing system includes: a plurality of imaging devices each of which includes an image processing unit that executes image processing including development processing of RAW data obtained by imaging; and an information processing device that acquires power supply information regarding power supply states of the plurality of imaging devices, selects the imaging device that executes the development processing according to the power supply state represented by the acquired power supply information, and causes the selected imaging device to execute the development processing.
Abstract:
An imaging device includes: a lens-side suppression unit that moves an anti-vibration lens, which is provided in an interchangeable imaging lens mounted on an imaging device body including an imaging element, to a position, which is determined according to a detection result of a detection unit detecting vibration applied to a device, to suppress an influence of the vibration on a subject image; an imaging element-side suppression unit that moves the imaging element to suppress a shift in an angle of view caused by the movement of the anti-vibration lens; and a control unit that performs control on the lens-side suppression unit to limit a movable range of the anti-vibration lens, which is moved by the lens-side suppression unit, on the basis of the amount of the maximum shift in the angle of view caused by the movement of the imaging element performed by the imaging element-side suppression unit.
Abstract:
The present invention provides an image processing device, an imaging device, an image processing method, and a program which are capable of accurately correcting blurring caused in first image data of an image using a near-infrared ray as a light source and, accurately performing a point image restoration process on second image data of an image using visible light and a near-infrared ray as a light source. An image processing device according to an aspect of the present invention includes an image input unit, a determination unit that determines whether image data is first image data or second image data, a first restoration processing unit that performs a first restoration process using first restoration filters for performing phase correction and amplitude restoration on the determined first image data, and a second restoration processing unit that performs a second restoration process using second restoration filters for performing amplitude restoration without phase correction on the determined second image data.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
A restoration filter based on a point spread function of an optical system is applied to source image data acquired through photographing using the optical system to acquire restored image data (S13: filter application step). Adjustment of an amplification factor of the difference between source image data and restored image data is performed, and recovered image data is acquired from the difference after adjustment and source image data (S15: gain adjustment step). In the filter application step, a common filter determined regardless of a value of a magnification of an optical zoom of the optical system is used as the restoration filter, and in the gain adjustment step, the amplification factor is determined based on the magnification of the optical zoom of the optical system.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
A color imaging element including color filters arranged on pixels, wherein the color filter array includes a basic array pattern including first filters corresponding to a first color that most contributes to obtaining luminance signals and second filters corresponding to two or more second colors other than the first color, the basic array pattern repeatedly arranged in the horizontal and vertical directions, one or more first filters are arranged in each line in horizontal, vertical, and oblique directions of the color filter array, one or more second filters are arranged in each line in the horizontal and vertical directions of the color filter array in the basic array pattern, and a proportion of the number of pixels of the first color corresponding to the first filters is greater than proportions of the numbers of pixels of each color of the second colors corresponding to the second filters.
Abstract:
According to the present invention, when restoration processing of a taken image by the use of a restoration filter corresponding to a subject distance is performed, by storing only a corresponding restoration filter in a subject distance range between the estimation variation close range and the infinity such that a restoration filter in a range on the nearer side than the estimation variation close range is not provided from the beginning, it is thereby possible to reduce the number of restoration filters held beforehand.
Abstract:
A color imaging element, includes a color filter array, in which the color filter array includes an array pattern of a 3×3 pixel group in which first filters corresponding to a green color and second filters corresponding to red and blue colors are arrayed, and the first filters are placed at a center and 4 corners in the 3×3 pixel group, and the array pattern is repeatedly placed in horizontal and vertical directions, and in a pixel group within a predetermined area of the color imaging element, phase difference detection pixels for acquiring phase difference information are placed in entire components of one direction among components in the horizontal direction and components in the vertical direction in the pixel group.