Abstract:
A plasma display panel in which projections are formed in grooves between partitions and phosphor layers are provided on the projections so as to increase the area where phosphor adheres and thereby to increase the luminance. A couple of substrates are opposed to each other to form a discharge space. Band-like partitions partitioning the discharge space are arranged on the back or front substrate. Wall-like projections lower than the partitions and high enough to increase the area where phosphor layers are formed are provided in the region where the discharge space is formed in the long grooves between the partitions or around the discharge space. Phosphor layers are formed in the grooves between the partitions including the wall-like projections. A method for producing such a plasma display panel is also disclosed.
Abstract:
A partition is formed by the process including a step for providing a sheet-like partition material that covers a display area and outside thereof on the surface of the substrate, a step for providing a mask for patterning that covers the display area and the outside thereof, so that a pattern of the portion arranged outside of the display area of the mask is a grid-like pattern, a step for patterning the partition material covered partially with the mask by a sandblasting process, and a step for baking the partition material after the patterning.
Abstract:
The present invention provides that a gas discharge panel substrate assembly comprising: electrodes formed on a substrate, a dielectric layer covering the electrodes, and a protective layer covering the dielectric layer and in contact with a discharge space, wherein the protective layer includes MgO and at least one compound selected from the group consisting of an Al compound, a Ti compound, a Y compound, a Zn compound, a Zr compound, a Ta compound and SiC.
Abstract:
A field-emission cathode having an emitter provided with a substrate, an emitter electrode layer, an insulating layer, a gate electrode layer, the layers being formed on the substrate in this order, needlelike projections for electron emission provided on the emitter electrode layer in a gate opening from which the insulating layer and the gate electrode layer are removed and each grown from one point in a given direction, and different projections for electron emission formed on all or part of the projections. The projections of the emitter are made of metallic particles, and thereby the manufacturing cost is lowered.
Abstract:
A method of manufacturing a substrate for a flat panel display includes forming a plurality of grooves in the bottom surface of a float glass substrate by a subtractive process to form barrier ribs comprising the protrusions remaining between the respective grooves.
Abstract:
A substrate assembly for a gas discharge panel, comprising a dielectric layer and a protective layer of MgO being formed in this order on a substrate having electrodes, wherein the dielectric layer is a laminate of an organic dielectric layer and an inorganic dielectric layer in this order from a side of the substrate.
Abstract:
A panel assembly for a PDP having ribs of partitioning a discharge space on a substrate includes grooves each formed between adjacent ribs. Each of the grooves has deeper groove regions to be luminous areas and shallower groove regions to be non-luminous areas. Black material layers are formed on the shallower groove regions.
Abstract:
A plasma display panel is provided which has a novel cell structure excelling in light emission efficiency. Each display electrode arranged on a first substrate making a substrate pair is formed in a manner to have a three-dimensional structure including an elongated power supplying portion stretching over plural cells aligned in one direction, and discharge portions protruding from the power supplying portion in the direction of electrode arrangement for each cell so as to be close to a second substrate.
Abstract:
A PDP having a novel cell structure that is superior in light emission efficiency is provided. A conductive film to be display electrodes X and Y is formed on side portions of a wall so that a main surface that contributes to discharge in the display electrode X is disposed so as to be opposed to a main surface of the neighboring display electrode Y via a gas space. A power supplying portion straddling plural cells in the display electrodes X and Y is provided on the upper surface of the wall. The display electrodes X and Y are covered with a dielectric layer that is thin at the side portion and thick at the top portion of the wall.
Abstract:
A plasma display panel for easy fabrication is provided with an improved black stripe structure. The structure eliminates the black stripes on a front substrate, leading to more freedom in material selection without suffering from the known problem of tarnishing of component members. Further, non-discharge spaces are provided in barrier ribs formed on a rear substrate and black material layers functioning as the black stripes are formed in cavities corresponding to the non-discharge spaces. Thus, this structure serves to form the black material layers in a sequential process which is similar to that for forming phosphor layers, thereby allowing the plasma display panel to have excellent contrast without complicating the structure and the fabrication process thereof.