Abstract:
A bearing (3), preferably elastomeric, which can be employed in machine construction (1), in particular for generators of wind turbines. The bearing (3), owing to its design, can be positioned both in the vertical and also in the horizontal direction under load at any time in such a way that any present drive/gear shafts are aligned with one another.
Abstract:
An elastomeric bushing and a bearing which is equipped with the bushing in question. The bushing can, even after installation in the bearing, be pretensioned or calibrated, by displacement of elastomeric material in the interior of the bushing, where the displacement is carried out by different pressing means and tensioning means in the bushing and/or in the surrounding bearing.
Abstract:
A temperature-compensating damping element, which is suitable for the temperature-independent reduction of vibrations, which has a fixed, non-elastic outer part and a fixed, non-elastic inner part, which is either inserted fully or partly into a mating cut-out or opening of the outer part. The outer and inner parts have contact surfaces which are connected to one another by an elastic layer which comprises an elastomer material and which is, or can be, pre-tensioned with respect to a desired frequency by a tensioning element. The elastic layer which is responsible for the vibration damping is directly connected at one or more points to an additional elastic volume. The additional elastic volume is a multiple of the volume of the elastic layer, and has the effect that the excitation frequency of the damping element changes in the case of a temperature change within a temperature range.
Abstract:
A temperature-compensating damping element, which is suitable for the temperature-independent reduction of vibrations, which has a fixed, non-elastic outer part and a fixed, non-elastic inner part, which is either inserted fully or partly into a mating cut-out or opening of the outer part. The outer and inner parts have contact surfaces which are connected to one another by an elastic layer which comprises an elastomer material and which is, or can be, pre-tensioned with respect to a desired frequency by a tensioning element. The elastic layer which is responsible for the vibration damping is directly connected at one or more points to an additional elastic volume. The additional elastic volume is a multiple of the volume of the elastic layer, and has the effect that the excitation frequency of the damping element changes in the case of a temperature change within a temperature range.
Abstract:
Elastomer components (104), which are to have an elastomer volume with a sufficiently large prestress, as is required, for example, for use in wind energy plants. The elastomer components (104) are substantially based on the incorporation and integration of separating elements (105) into the elastomer body of the component, the elements are disposed either individually or in structures. The body may be compressed by pressure supplied into the region, between the separating elements and the surrounding elastomer material, or directly into the separating elements, such that elastomer components are prestressed in a dynamically adjustable manner.
Abstract:
A mechanically adjustable elastomer bearing based on a correspondingly arranged spring element whose spring stiffness can be adjusted or pretensioned individually by deformable elastomer bodies or elastomer layers. The deformation of the elastomer layers, and thus of the spring elements, is achieved by a pressure-generated device which is fully integrated into the spring element. The elastomer bearing are particularly suitable for use as bearings in rotor and gearbox for large wind turbines, but can also advantageously be employed in machine and vehicle construction, and in particular package clutches.
Abstract:
An elastomeric bearing arrangement for the reduction of machine vibrations caused predominantly by externally acting forces. The bearing, due to its special design and construction symmetry, is capable of processing the forces occurring in all spatial directions with optimal material protection. The bearing is preferably suitable for a rotational connection of rotor/gearbox units to the support plate in wind turbines. The bearing has a sandwich element (5), a cone element (3), a cone piece (4) and a cylinder piece (4a) which interact with one another.
Abstract:
A clamping bushing which, due to the particular eccentric geometry and composite materials used to manufacture the same, comprising elastomers (14, 15) and metal sheets (10, 11), is suitable for the reduction of principally vertically acting vibrations and structure-borne sound which can arise in machines/gearboxes and, in particular, in wind turbines.
Abstract:
An elastomeric bushing and a bearing which is equipped with the bushing in question. The bushing can, even after installation in the bearing, be pretensioned or calibrated, by displacement of elastomeric material in the interior of the bushing, where the displacement is carried out by different pressing means and tensioning means in the bushing and/or in the surrounding bearing.
Abstract:
An elastomeric bearing arrangement for the reduction of machine vibrations caused predominantly by externally acting forces. The bearing, due to its special design and construction symmetry, is capable of processing the forces occurring in all spatial directions with optimal material protection. The bearing is preferably suitable for a rotational connection of rotor/gearbox units to the support plate in wind turbines. The bearing has a sandwich element (5), a cone element (3), a cone piece (4) and a cylinder piece (4a) which interact with one another.