摘要:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
摘要:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
摘要:
A communications module for facilitating secure communications on a first network and a second network includes: a single transceiver for receiving and transmitting first network messages from and to the first network and at least transmitting second network messages to the second network; at least a first processor connected to the single transceiver for processing one or more first network messages and second network messages; the at least a first processor including first network logic for processing first network messages and second network logic for processing second network messages; and the second network logic including instructions for securing second network messages such that decryption of the second network messages is limited to a particular receiving device on the second network. The second network messages may include commodity pricing and use information.
摘要:
A communications module for facilitating secure communications on a first network and a second network includes: a single transceiver for receiving and transmitting first network messages from and to the first network and at least transmitting second network messages to the second network; at least a first processor connected to the single transceiver for processing one or more first network messages and second network messages; the at least a first processor including first network logic for processing first network messages and second network logic for processing second network messages; and the second network logic including instructions for securing second network messages such that decryption of the second network messages is limited to a particular receiving device on the second network. The second network messages may include commodity pricing and use information.
摘要:
An asymmetric network system manages bandwidth allocation and configuration of remote devices in a broadband network. A modular architecture of the system permits independent scalability of upstream and downstream capacity separately for each of the upstream and downstream physical paths. Allocation of downstream bandwidth to requesting devices is made according to bandwidth utilization by other devices, bandwidth demand by the requesting remote device, class or grade of service by the requesting remote device or bandwidth guaranteed to other remote devices. Configuration parameters remotely managed by the network include device addresses (global and local), transmission credit values, upstream channel assignment and upstream transmit power level. Further, management of device configuration profiles and bandwidth allocation occurs through control and response packets respectively generated by the network and the remote devices according to network operating software located at both ends. Control packets include poll packets that request, among other things, demand for an upstream transmission. Configuration packets instruct remote devices to assume an operational state or return status or statistical data. Response packets transmitted by the remote devices provide information to the network operations center for control purposes or to confirm the state of operation of remote devices, including channel operating statistics, errors, noise, etc. in order to remove or reallocate assigned upstream channels. Downloadable network operating software enables the network operator to upgrade remote operating software or to reconfigure the response profile of the remote devices. Account administration and usage reports are also generated. IP or ATM encapsulation, as well as forward error correction and encryption, are employed in the broadband network which may include an RF, satellite and cable medium with or without a telephony or router return path.
摘要:
An asymmetric network system manages bandwidth allocation and configuration of remote devices in a broadband network. A modular architecture of the system permits independent scalability of upstream and downstream capacity separately for each of the upstream and downstream physical paths. Allocation of downstream bandwidth to requesting devices is made according to bandwidth utilization by other devices, bandwidth demand by the requesting remote device, class or grade of service by the requesting remote device or bandwidth guaranteed to other remote devices.
摘要:
A dual-mode router for conveying process communication packets across a plurality of distinct wireless process communication networks is provided. The router includes wireless communication circuitry and a controller coupled to the wireless communication circuitry. The wireless communication circuitry is configured to interact with signals from each of the plurality of distinct wireless process communication networks. The controller is configured to adapt process communication packets from a first distinct wireless process communication network for transmission over a second distinct wireless process communication network. Methods for configuring the distinct wireless process communication networks and relaying process packets over the distinct wireless process communication networks are also provided.
摘要:
An antenna locking mechanism for locking an antenna of a wireless networking device at a desired position. A method of locking an antenna into position is also disclosed.
摘要:
A medium access controller for a multi-user network that assigns or changes the operating protocol of multiple upstream channels according to user loading, user status, and/or type of payload data transfers requested by the user or detected by the controller. One group of upstream channels utilizes a contention-only protocol for non-responding or off-line users, a second group utilizes a limited type polling protocol for users requiring only brief transfers of payload data, and a third group utilizes an exhaustive polling protocol user requiring large amounts of payload data transfers. Limited type polling provides low latency for quick response to accommodate multiple users, while exhaustive polling provides large data throughput at the expense of latency. Additional levels of limited or exhaustive polling may be employed to accommodate a larger variety of users needs. In addition, the channels themselves may be dynamically reclassified between and among contention and first and/or other level polling modes based on user loading and/or the nature and character of on-going data transfers in order to achieve maximum utilization of shared resources. After initiating a data transmission, the controller may also dynamically assign channels to a user based on detected changes in actual data transmissions. Thus, rules based on user activity level may be implemented to determine when a user is switched between channel groups. Essentially, the controller may effect switching of the users' upstream channels dynamically and intelligently on a packet-by-packet basis. Users may include modems and/or other terminal devices in a client-server or other data communication network.