Abstract:
System and method embodiments are provided for provisioning a quality of cellular user experience (QoE) or quality of service (QoS) specified device in a wireless local area network (LAN). The embodiments enable a QoE or QoS specified by a service agreement for a device to be maintained during periods when the device is transmitting data to and receiving data from the wireless LAN (e.g., a WiFi hotspot). In an embodiment, a method includes determining that at least one QoS-sensitive device is communicating with a wireless LAN access point (AP), reserving a contention free period (CFP) in a superframe for the at least one QoS-sensitive device to communicate with the AP, and allocating a contention period (CP) in the superframe for non-QoS-sensitive devices to communicate with the AP, wherein the non-QoS-sensitive devices are prohibited from transmitting during the CFP.
Abstract:
System and method embodiments are provided for high efficiency wireless communications. In an embodiment, a method in a network component for transmitting a frame of two different fast Fourier transform (FFT) sizes includes generating a frame, wherein the frame comprises orthogonal frequency-division multiplexing (OFDM) symbols in two different FFT sizes, wherein the frame comprises a first portion and a second portion, wherein the first portion comprises a first FFT size and the second portion comprises a second FFT size; and transmitting the frame during a single transmission opportunity.
Abstract:
Embodiments are provided to enable concurrent uplink transmissions from multiple Wi-Fi stations (STAs) to one or more access points (APs) using Interference Alignment (IA). In an embodiment, the STAs broadcast, to one or more APs, beamforming reports including channel estimation information for downlink. The one or more AP then performs channel estimation using the beamforming reports, and selects at least some of the STAs. The AP also computes beamforming information for IA of uplink transmissions between the selected STAs and sends, to the selected STAs, the beamforming information. The beamforming information is piggy-backed over downlink data packets to the selected STAs. Each selected STA then sends an uplink data frame concurrently with one or more other uplink data frames from one or more other selected STAs to the AP. The uplink data frames are configured for concurrent uplink transmissions according to the beamforming information for IA.
Abstract:
Embodiments are provided herein for implementing a user cooperation protocol for interference alignment (IA) in wireless local area network (WLAN) or a Wi-Fi hotspot. The embodiments allow collecting knowledge of the channels from user stations (STAs) and sending this information to the corresponding access points (APs) in the network. This information is then used by the APs to pre-code their signals such as to remove interfering signals to non-intended STAs. An AP transmits to the STAs a group identifier (GrpID) indicating an order of STAs for transmitting channel state information (CSI) and an AP index indicating an order of STA groups of the APs for transmitting the CSI. When a STA detects a CSI transmission from another STA preceding the STA in the order of transmission as indicated by the AP index and GrpID, the STA transmits its CSI.
Abstract:
Embodiments are provided for enabling a coordinated beamforming (CB) mechanism in WLAN scenarios. In an embodiment, an AP sends a Feedback Request (FBR) frame to each one of the STAs in the OBSSs. The OBSSs comprise the STAs and a plurality of APs including the AP. The AP then receives a feedback frame from each STA of the STAs that participate in the CB transmission. The feedback frame includes channel state information (CSI) of the STA. The CSI enables the sending AP of performing CB on downlink. In an embodiment, the AP receives an initiate CB frame from a second AP initiating a CB transmission, and then sends an ACK frame to the second AP before sending the FBR frame to each one of the STAs. The AP starts the CB transmission with each one of the other APs that participate in the CB transmission.
Abstract:
A method for transmitting a frame includes generating an omni portion of the frame, the omni portion including a non-beamformed long training field and a signal field, the non-beamformed long training field including channel estimation information used to decode the signal field, the non-beamformed long training field configured to be transmitted through one of multiple antennas and multiple streams. The method also includes generating a multi-stream portion of the frame, the multi-stream portion including a data field and a multi-stream long training field, the multi-stream long training field including station-specific decoding information for station-specific data in the data field. The method further includes applying a beamforming indicator to the signal field of the omni portion, and transmitting the frame.
Abstract:
A method for providing channel feedback includes receiving a signal from a transmission point (TP), estimating channel parameters from the signal as received, mapping the estimated channel parameters to a trellis in accordance with a Trellis Coded Quantization (TCQ) scheme, and applying a Viterbi algorithm (VA) to the trellis to generate quantized channel parameters, the quantized channel parameters including a plurality of samples. The method also includes identifying samples of the estimated channel parameters associated with samples of quantized channel parameters having quantization errors above a predetermined threshold, generating indicators in accordance with the samples having the quantization error above the predetermined threshold, and transmitting, by the RP, the quantized channel parameters and the indicators to the
Abstract:
System and method embodiments are provided for Trellis Coded Quantization (TCQ) based channel feedback. The embodiments provide full channel state information with a short feedback size to a scheduler in order for the scheduler to apply advanced beamforming schemes, such as those designed in non-linear precoder methods. In an embodiment, a method in a station for providing channel feedback to a transmission point (TP) in a wireless system includes receiving a signal from the TP; estimating channel parameters for the signal; applying a TCQ scheme to the estimated channel parameters to map the channel estimate parameters to trellis codes; and transmitting full channel state information to the TP, wherein the full channel state information comprises output of a Viterbi algorithm (VA) corresponding to the trellis codes.
Abstract:
Efficient decoding in IEEE 802.11ah networks can be achieved by transmitting the signal (SIG) preamble field without interleaving bits within the SIG field. This may allow channel equalization and decoding steps to be performed contemporaneously upon reception of the frame, which allows for the implementation of non-linear channel equalization techniques (e.g., maximum likelihood (ML) equalization, etc.
Abstract:
Embodiments are provided for implementing a control function in a Wireless Local Area Network (WLAN) for allocation of resources to multiple stations (STAs) to enable Orthogonal Frequency Division Multiple Access (OFDMA) communications. An embodiment method includes determining a plurality of transmission resources for OFDMA communications of a plurality of STAs in the WLAN. The determination includes allocating a plurality of subcarriers to the STAs. The method further includes signaling the determined transmission resources to the STAs. The signaling of the transmission resources is piggybacked on at least one of data and management frames, such as in a sub-header of a MAC frame, or is an explicit signaling, such as in one or more dedicated fields of a traffic specification information element. The transmission resources for OFDMA communications allow simultaneous transmissions of the STAs in the WLAN.