Abstract:
System and method embodiments are provided for evolved packet core cluster and session handling. In an embodiment, a method in a network component for cluster and session handling includes receiving, by a MC-C in a first resource pool in a cluster of resources, an attach request from a SORC for a PDN connection for a UE, the MC-C and the first resource pool selected by the SORC according to a UE address, a resource load, and an operator policy; configuring session control and gateway resources for a session for the UE; negotiating with a follower site to determine state information for a bearer context of the UE; synchronizing the state information with follower sites when a state is agreed upon by at least some of the follower sites; and forming an availability group according to a set of servers that hold replicated state information for the UE.
Abstract:
A method, apparatus and system related to a packet data network (PDN) connection for a radio access network (RAN) are provided. The PDN connections between eNB of the RAN and an Evolved Packet Core (EPC) are forward though Ethernet switching network. A controller at Evolved Packet Core (EPC) site such as EPC controller or centralized switch controller is configured to configure flow table entries along the transport path from eNB to a gateway of the EPC.
Abstract:
Single radio handovers (SRHOs) between heterogonous networks can be facilitated using several techniques. One such technique includes activating a receiver of a target radio interface in a mobile node without activating a transmitter of the target radio interface, thereby allowing the mobile node to perform target network discovery while the transmitter of the target radio interface remains deactivated. Another such technique includes encapsulating link-layer discovery frames into media independent handover frames (MIH), and then tunneling the MIH frames over a tunnel extending through the source network. This may allow the MN to achieve various handover related tasks without activating the target radio link. Another technique includes establishing a schedule (or delay period) for synchronizing deactivation of the source radio interface with activation of the transmitter in the target radio interface.
Abstract:
A method for mobility management for a mobile node that establishes a connection with a first network while in a second network and traverses to a third network includes transferring location management information from the second network to the first network. An indirection path from the first network to the third network is established for data packets directed to the mobile node. The data packets directed to the mobile node are transferred using the indirection path without traversing the second network. This allows for the address anchor of the connection to remain at the second network while providing a flow anchor at the first network, which allows a direct flow to the third network.
Abstract:
A method for updating location information includes detecting a change in mobility of a second device, and determining whether an update condition has been met. When the update condition has been met, the method also includes updating a first location management function in accordance with location information of the second device, and forwarding the location information of the second device to a second location management function.
Abstract:
Single radio handovers (SRHOs) between heterogonous networks can be facilitated using several techniques. One such technique includes activating a receiver of a target radio interface in a mobile node without activating a transmitter of the target radio interface, thereby allowing the mobile node to perform target network discovery while the transmitter of the target radio interface remains deactivated. Another such technique includes encapsulating link-layer discovery frames into media independent handover frames (MIH), and then tunneling the MIH frames over a tunnel extending through the source network. This may allow the MN to achieve various handover related tasks without activating the target radio link. Another technique includes establishing a schedule (or delay period) for synchronizing deactivation of the source radio interface with activation of the transmitter in the target radio interface.
Abstract:
System and method embodiments are provided for extending Access Network Discovery and Selection Function (ANDSF) with Access Network Query Protocol (ANQP) server capability. An embodiment method for network discovery and selection (NDS) includes receiving, at an ANQP proxy, query for network discovery information from a user equipment (UE), forwarding the query to an ANDSF including an indication for a service provider associated with a domain of users, receiving information associated with the service provider from the ANDSF, and forwarding the information associated with the service provider to the UE.
Abstract:
A method for updating location information includes detecting a change in mobility of a second device, and determining whether an update condition has been met. When the update condition has been met, the method also includes updating a first location management function in accordance with location information of the second device, and forwarding the location information of the second device to a second location management function.
Abstract:
A method for mobility management for a mobile node that establishes a connection with a first network while in a second network and traverses to a third network includes transferring location management information from the second network to the first network. An indirection path from the first network to the third network is established for data packets directed to the mobile node. The data packets directed to the mobile node are transferred using the indirection path without traversing the second network. This allows for the address anchor of the connection to remain at the second network while providing a flow anchor at the first network, which allows a direct flow to the third network.
Abstract:
System and method embodiments are provided for evolved packet core cluster and session handling. In an embodiment, a method in a network component for cluster and session handling includes receiving, by a MC-C in a first resource pool in a cluster of resources, an attach request from a SORC for a PDN connection for a UE, the MC-C and the first resource pool selected by the SORC according to a UE address, a resource load, and an operator policy; configuring session control and gateway resources for a session for the UE; negotiating with a follower site to determine state information for a bearer context of the UE; synchronizing the state information with follower sites when a state is agreed upon by at least some of the follower sites; and forming an availability group according to a set of servers that hold replicated state information for the UE.