Abstract:
A quench protection apparatus includes a number N of superconducting coils and a heater matrix. The number N of superconducting coils are electrically coupled in series. The heater matrix module includes the number N of heater units. The number N of heater units is electrically coupled in parallel with the number N of superconducting coils respectively. A number M of the heater units each includes at least the number N of heaters. Each superconducting coil is thermally coupled with at least one heater of each of the number M of the heater units. The number of N-M of the heater units each includes at least one heater. Each of the number M of superconducting coils correspondingly coupled with the number M of the heater units is thermally coupled with at least one heater of each of the number N-M of the heater units. A superconducting magnet system protected by above quench protection apparatus is also provided.
Abstract:
A superconducting magnet system includes a coil support structure, superconducting coils, and electrically and thermally conductive windings. The superconducting coils and the conductive windings are supported by the coil support structure. Each conductive winding is electromagnetically coupled with a corresponding superconducting coil. Each conductive winding is electrically shorted.
Abstract:
A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
Abstract:
A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
Abstract:
A system for energizing a main coil of superconducting magnet in a magnetic resonance imaging (MRI) system includes a cryostat comprising a housing. A first coil is positioned within the housing of the cryostat. Alternatively, the first coil may be positioned external to the housing of the cryostat. A second coil is coupled to the first coil and positioned external to the housing of the cryostat. The second coil is configured to inductively couple to the main coil. A controller is coupled to the first coil and the second coil and is configured to control the first coil and the second coil to induce current in the main coil.
Abstract:
A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
Abstract:
A quench protection apparatus includes a number N of superconducting coils and a heater matrix. The number N of superconducting coils are electrically coupled in series. The heater matrix module includes the number N of heater units. The number N of heater units is electrically coupled in parallel with the number N of superconducting coils respectively. A number M of the heater units each includes at least the number N of heaters. Each superconducting coil is thermally coupled with at least one heater of each of the number M of the heater units. The number of N-M of the heater units each includes at least one heater. Each of the number M of superconducting coils correspondingly coupled with the number M of the heater units is thermally coupled with at least one heater of each of the number N-M of the heater units. A superconducting magnet system protected by above quench protection apparatus is also provided.
Abstract:
A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
Abstract:
A magnet apparatus for a magnetic resonance imaging system, the magnet apparatus includes a cylindrical vacuum vessel, a closed loop cooling system disposed within the vacuum vessel and a cylindrical thermal shield disposed between the vacuum vessel and the closed loop cooling system. A set of passive compensation coils are disposed within the vacuum vessel and used to compensate for magnetic field distortion caused by mechanical vibrations within the magnet apparatus.
Abstract:
A system for energizing a main coil of superconducting magnet in a magnetic resonance imaging (MRI) system includes a cryostat comprising a housing. A first coil is positioned within the housing of the cryostat. Alternatively, the first coil may be positioned external to the housing of the cryostat. A second coil is coupled to the first coil and positioned external to the housing of the cryostat. The second coil is configured to inductively couple to the main coil. A controller is coupled to the first coil and the second coil and is configured to control the first coil and the second coil to induce current in the main coil.