Abstract:
Systems and methods for controlling motion of detectors having moving detector heads are provided. One system includes a gantry and a plurality of detector units mounted to the gantry, wherein the plurality of detector units are individually movable including translational movement and rotational movement. The system further includes a controller configured to control movement of the plurality of detector units to acquire Single Photon Emission Computed Tomography (SPECT) data, wherein the movement includes both the translational movement and the rotational movement coordinated to position the plurality of detector units adjacent to a subject.
Abstract:
Systems and methods for controlling motion of detectors having moving detector heads are provided. One system includes a gantry and a plurality of detector units mounted to the gantry, wherein the plurality of detector units are individually movable including translational movement and rotational movement. The system further includes a controller configured to control movement of the plurality of detector units to acquire Single Photon Emission Computed Tomography (SPECT) data, wherein the movement includes both the translational movement and the rotational movement coordinated to position the plurality of detector units adjacent to a subject.
Abstract:
A customizable and upgradable imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The gantry can be partially populated with detector columns and the detector columns can be partially populated with detector elements.
Abstract:
Methods and apparatus for imaging with detectors having moving heads are provided. One apparatus includes a gantry and a plurality of detector units mounted to the gantry. At least some of the plurality of detector units are movable relative to the gantry to position one or more of the detector units with respect to a subject. The detector units are movable along parallel axes with respect to each other.
Abstract:
A method for performing an imaging scan of a subject includes positioning a narrow field-of-view camera at a first imaging position to acquire a first set of imaging information of a first object of interest, positioning the narrow field-of-view camera at a second imaging position to acquire a second set of imaging information of a second object of interest, determining emission counts for the first and second sets of imaging information, and utilizing the determined emission counts to generate a value that indicates a probability of a successful medical procedure being performed on the subject.
Abstract:
Nuclear medicine (NM) multi-head imaging system includes a gantry defining a bore and a table positioned within the bore. The system also includes a plurality of detector units coupled to the gantry. Each of the detector units is configured to rotate about a unit axis. The plurality of detector units include first and second detector units. The system also includes at least one processor configured to execute programmed instructions stored in memory, wherein the at least one processor, when executing the programmed instructions, rotates the first and second detector units as the first and second detector units acquire image data and generates a composite persistence image based on the image data. The table is configured to be moved within the bore in response to inputs from a user or commands from the at least one processor.
Abstract:
A method is provided including identifying a target portion of a patient corresponding to a portion of interest of the patient to be scanned with a nuclear medicine scanning technique. The method also includes applying an uptake increasing technique to at least one of the target portion or an application portion of the patient other than the target portion. The uptake increasing technique is configured to increase uptake of a radiopharmaceutical to the target portion of the patient relative to portions of the patient other than the target portion. Also, the method includes administering the radiopharmaceutical to the patient temporally proximate to the applying an uptake increasing technique.
Abstract:
A medical imaging system is provided. The imaging system provides patient region-of-interest scanning using a step-staggered detector unit arrangement. A region-of-interest may be a brain. This system can be a Nuclear Medicine (NM) imaging system to acquire Single Photon Emission Computed Tomography (SPECT) image information. The imaging system may comprise CZT detector modules.
Abstract:
An imaging system is provided including a plurality of detector units and a controller. The plurality of detector units are distributed about a bore. The bore is configured to accept an object to be imaged, and the detector units are radially articulable within the bore. The controller is operably coupled to the plurality of detector units and configured to control the positioning of the detector units. The controller is configured to position an external group of the plurality of detector units at a predetermined intermediate position corresponding to a ring having a radius corresponding to a total number of detector units, and to position an internal group of the plurality of detector units radially inside the ring.
Abstract:
An apparatus for capturing images is described herein. The apparatus may include a column attached to a gantry. The column may include a movable section and a radiation detector disposed in the movable section. The apparatus may include a weight compensation unit to apply a force on the movable section opposite to a force of gravity associated with at least the movable section and the radiation detector.