Abstract:
A method of forming a semiconductor on a porous semiconductor structure. The method may include forming a stack, the stack includes (from bottom to top) a substrate, a base silicon layer, a thick silicon layer, and a thin silicon layer, where the thin silicon layer and the thick silicon layer are relaxed; converting the thick silicon layer into a porous silicon layer using a porousification process; and forming a III-V layer on the thin silicon layer, where the layer is relaxed, the thin silicon layer is strained, and the porous silicon layer is partially strained.
Abstract:
Electrical shorting between source and/or drain contacts and a conductive gate of a FinFET-based semiconductor structure are prevented by forming the source and drain contacts in two parts, a bottom contact part extending up to a height of the gate cap and an upper contact part situated on at least part of the bottom contact part.
Abstract:
A semiconductor device includes gates and a low-k spacer. The low-k spacer includes low-k spacer portions formed upon the gate sidewalls and a low-k spacer portion formed upon a top surface of an underlying substrate adjacent to the gates. When a structure has previously undergone a gate processing fabrication stage, the gates and at least a portion of the top surface of the substrate may be exposed thereby allowing the formation of the low-k spacer. This exposure may include removing any original gate spacers, removing an original liner formed upon the original spacers, and removing any original fill material formed upon the liner.
Abstract:
Relaxed silicon germanium fins are formed on a bulk silicon substrate through the lateral recrystallization of molten silicon germanium having high germanium content. Following formation of the silicon germanium fins, the silicon is selectively recessed.The resulting trenches are filled with electrically insulating material and then recessed down to the bottoms of the fins.
Abstract:
A method of forming a semiconductor structure that includes compressive strained silicon germanium alloy fins having a first germanium content and tensile strained silicon germanium alloy fins having a second germanium content that is less than the first germanium content is provided. The different strained and germanium content silicon germanium alloy fins are located on a same substrate. The method includes forming a cladding layer of silicon around a set of the silicon germanium alloy fins, and forming a cladding layer of a germanium containing material around another set of the silicon germanium alloy fins. Thermal mixing is then employed to form the different strained and germanium content silicon germanium alloy fins.
Abstract:
A semiconductor device is disclosed. The semiconductor device can include a first dielectric layer disposed on a substrate; a set of bias lines disposed on the first dielectric layer; a second dielectric layer disposed on the first dielectric layer and between the set of bias lines, wherein a thickness of the second dielectric layer is less than a thickness of the first dielectric layer; a patterned semiconductor layer disposed on portions of the second dielectric layer; and a set of devices disposed on the patterned semiconductor layer above the set of bias lines.
Abstract:
A semiconductor structure including a semiconductor wafer. The semiconductor wafer includes a gate structure, a first trench in the semiconductor wafer adjacent to a first side of the gate structure and a second trench adjacent to a second side of the gate structure, the first and second trenches filled with a doped epitaxial silicon to form a source in the filled first trench and a drain in the filled second trench such that each of the source and drain are recessed and have an inverted facet. In a preferred exemplary embodiment, the epitaxial silicon is doped with boron.
Abstract:
A method of forming a semiconductor structure that includes compressive strained silicon germanium alloy fins having a first germanium content and tensile strained silicon germanium alloy fins having a second germanium content that is less than the first germanium content is provided. The different strained and germanium content silicon germanium alloy fins are located on a same substrate. The method includes forming a cladding layer of silicon around a set of the silicon germanium alloy fins, and forming a cladding layer of a germanium containing material around another set of the silicon germanium alloy fins. Thermal mixing is then employed to form the different strained and germanium content silicon germanium alloy fins.
Abstract:
A punch through stop layer is formed in a bulk FinFET structure using doped oxides. Dopants are driven into the substrate and base portions of the fins by annealing. The punch through stop layer includes a p-type region and an n-type region, both of which may extend substantially equal distances into the semiconductor fins.
Abstract:
A semiconductor structure is provided that contains silicon fins having different heights, while maintaining a reasonable fin height to width ratio for process feasibility. The semiconductor structure includes a first silicon fin of a first height that is located on a first buried oxide structure. The structure further includes a second silicon fin of a second height that is located on a second buried oxide structure that is spaced apart from the first buried oxide structure. The second height of the second silicon fin is greater than the first height of the first silicon fin, yet a topmost surface of the first silicon fin is coplanar of a topmost surface with the second silicon fin.