Abstract:
A method of fabricating a semiconductor device includes forming at least one semiconductor fin on a semiconductor substrate. A plurality of gate formation layers is formed on an etch stop layer disposed on the fin. The plurality of gate formation layers include a dummy gate layer formed from a dielectric material. The plurality of gate formation layers is patterned to form a plurality of dummy gate elements on the etch stop layer. Each dummy gate element is formed from the dielectric material. A spacer layer formed on the dummy gate elements is etched to form a spacer on each sidewall of dummy gate elements. A portion of the etch stop layer located between each dummy gate element is etched to expose a portion the semiconductor fin. A semiconductor material is epitaxially grown from the exposed portion of the semiconductor fin to form source/drain regions.
Abstract:
A semiconductor device is disclosed. The semiconductor device can include a first dielectric layer disposed on a substrate; a set of bias lines disposed on the first dielectric layer; a second dielectric layer disposed on the first dielectric layer and between the set of bias lines, wherein a thickness of the second dielectric layer is less than a thickness of the first dielectric layer; a patterned semiconductor layer disposed on portions of the second dielectric layer; and a set of devices disposed on the patterned semiconductor layer above the set of bias lines.
Abstract:
A semiconductor device includes a silicon-on-insulator (SOI) substrate having a buried oxide (BOX) layer, and a plurality of semiconductor fins formed on the BOX layer. The plurality of semiconductor fins include at least one pair of fins defining a BOX region therebetween. Gate lines are formed on the SOI substrate and extend across the plurality of semiconductor fins. Each gate line initially includes a dummy gate and a hardmask. A high dielectric (high-k) layer is formed on the hardmask and the BOX regions. At least one spacer is formed on each gate line such that the high-k layer is disposed between the spacer and the hardmask. A replacement gate process replaces the hardmask and the dummy gate with a metal gate. The high-k layer is ultimately removed from the gate line, while the high-k layer remains on the BOX region.
Abstract:
A semiconductor device is disclosed. The semiconductor device can include a first dielectric layer disposed on a substrate; a set of bias lines disposed on the first dielectric layer; a second dielectric layer disposed on the first dielectric layer and between the set of bias lines, wherein a thickness of the second dielectric layer is less than a thickness of the first dielectric layer; a patterned semiconductor layer disposed on portions of the second dielectric layer; and a set of devices disposed on the patterned semiconductor layer above the set of bias lines.
Abstract:
A method of forming a semiconductor device is disclosed. The method includes forming a first dielectric layer on a substrate; forming a set of bias lines on the first dielectric layer; covering the set of bias lines with a second dielectric layer; forming a semiconductor layer on the second dielectric layer; and forming a set of devices on the semiconductor layer above the set of bias lines.
Abstract:
A semiconductor device includes a first device region and second device region of opposite polarity. Each device region includes at least a transistor device and associated epitaxy. A high-k barrier is formed to overlay the first device region epitaxy only. The high-k barrier may include a substantially horizontal portion formed upon a top surface of the first device region epitaxy and a substantially vertical portion formed upon an outer surface of the first device region epitaxy. The substantially vertical portion may partially isolate the first device region from the second device region.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.