Abstract:
A vehicle includes a vision system configured to output a signal indicative of exterior conditions in a vicinity of the vehicle and a temperature sensor configured to output a signal indicative of an interior temperature of the vehicle. The vehicle also includes a plurality of articulable openings arranged to allow fluid flow communication between an interior and an exterior of the vehicle. The vehicle further includes a controller programmed to adjust at least one articulable opening toward an open position in response to the interior temperature exceeding a temperature threshold. The controller is also programmed to adjust at least one articulable opening toward a closed position in response to detection via the vision system of a threat condition in the vicinity of the vehicle.
Abstract:
A valve-in-receiver (VIR) for a vehicle climate control system includes a receiver drier (RD) shell including an outer surface and an inner surface defining an interior portion having an opening, and a cap member mounted to the RD shell across the opening, the cap member including an evaporator inlet portion, an evaporator outlet portion, a condenser inlet and a compressor outlet.
Abstract:
A heating, ventilation and air conditioning (HVAC) system for a vehicle having a rechargeable energy storage system includes a refrigerant circuit having a flow of refrigerant circulated therethrough. The refrigerant circuit includes a compressor, an internal condenser, and a chiller heat exchanger. A coolant circuit is fluidly connected to the refrigerant circuit and has a flow of coolant circulated therethrough. The coolant circuit includes the chiller heat exchanger, the internal condenser, a heater core, a rechargeable energy storage system (RESS), and a three-way coolant valve to selectably direct the flow of coolant through the RESS and/or along a bypass passage to bypass the RESS.
Abstract:
An automobile vehicle refrigeration system combined ejector-receiver includes a container. An internal heat exchanger (IHX) is positioned entirely within the container. The IHX includes a canister. A receiver and dryer is located entirely within the container and is positioned at least partially within the canister defining a cavity between the receiver and dryer and the canister to receive a refrigerant. An ejector is positioned within the container. An ejector feed line is in communication with the cavity between the receiver and dryer and the canister, the ejector feed line receiving the refrigerant after discharge from the cavity for flow into the ejector. A refrigerant phase separator is positioned within the container. The refrigerant phase separator receives the refrigerant after discharge from the ejector for separation into each of a refrigerant gas and a refrigerant liquid.
Abstract:
A valve-in-receiver (VIR) for a vehicle climate control system includes a receiver drier (RD) shell including an outer surface and an inner surface defining an interior portion having an opening, and a cap member mounted to the RD shell across the opening, the cap member including an evaporator inlet portion, an evaporator outlet portion, a condenser inlet and a compressor outlet.
Abstract:
A heating, ventilation and air conditioning (HVAC) system for a vehicle having a rechargeable energy storage system includes a refrigerant circuit having a flow of refrigerant circulated therethrough. The refrigerant circuit includes a compressor, an internal condenser, and a chiller heat exchanger. A coolant circuit is fluidly connected to the refrigerant circuit and has a flow of coolant circulated therethrough. The coolant circuit includes the internal condenser, a heater core, and a rechargeable energy storage system (RESS). The refrigerant circuit and the coolant circuit exchange thermal energy at the internal condenser. When operated in an HVAC operating mode, the HVAC system is configured to heat one or more of the heater core and the RESS with thermal energy generated at the compressor.
Abstract:
A vehicle HVAC system includes a component within a refrigerant system in a vehicle HVAC system, a vibration sensor that generates a vibration signal indicating a vibration of the component, and a controller in communication with the vibration sensor to receive the vibration signal and the refrigerant system. The controller is configured to determine whether the vibration signal corresponds to a predetermined vibration value and for adjusting the operation of the refrigerant system to minimize the system noise if the vibration signal corresponds to the predetermined vibration value.
Abstract:
A system, for inhibiting ice formation on a vehicle surface, and de-icing if determined needed to remove any frozen matter formed on the surface, including an anti-icing reservoir, a fluid-selecting control valve, and code that causes a processor to perform operations including determining whether the vehicle is parked, initiating, if parked, activation of, or obtaining of readouts from, any local sensors or routines to be used to determine whether a condition triggering initiation of an anti-freezing cycle is present. The operations include commencing, if triggered, an anti-icing cycle, including initiating changing of the fluid-selection valve to select the anti-freezing reservoir, and initiating pumping of the anti-icing fluid from the anti-icing reservoir to and through a fluid-dispensing nozzle, and onto the surface for inhibiting bonding of frozen material on the surface and/or remove any already formed frozen material on the surface.
Abstract:
A vehicle HVAC system includes a component within a refrigerant system in a vehicle HVAC system, a vibration sensor that generates a vibration signal indicating a vibration of the component, and a controller in communication with the vibration sensor to receive the vibration signal and the refrigerant system. The controller is configured to determine whether the vibration signal corresponds to a predetermined vibration value and for adjusting the operation of the refrigerant system to minimize the system noise if the vibration signal corresponds to the predetermined vibration value.
Abstract:
Presented are fuel cell systems and control logic for extracting water from system exhaust, methods for making/using such systems, and electric-drive vehicles with aftertreatment systems for extracting water from fuel cell exhaust. An aftertreatment system for a fuel cell stack includes a condensate generator that fluidly connects to the fuel cell stack to receive exhaust output therefrom. The condensate generator includes an evaporator core with a refrigerant line that actively cool the exhaust via controlled circulation of refrigerant fluid. A condensate collector fluidly connected to the condensate generator includes a reservoir housing with a condensate trap that separates entrained water vapor from the cooled exhaust. The reservoir housing collects the separated water vapor as liquid water. A liquid storage container fluidly connected to the condensate collector receives and stores the collected water. An expansion valve regulates the amount of refrigerant fluid passed into the evaporator core through the refrigerant line.