ENHANCED MULTI-CHANNEL ACOUSTIC MODELS
    2.
    发明申请

    公开(公告)号:US20190259409A1

    公开(公告)日:2019-08-22

    申请号:US16278830

    申请日:2019-02-19

    Applicant: Google LLC

    Abstract: This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.

    Processing audio waveforms
    4.
    发明授权

    公开(公告)号:US10930270B2

    公开(公告)日:2021-02-23

    申请号:US16541982

    申请日:2019-08-15

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing audio waveforms. In some implementations, a time-frequency feature representation is generated based on audio data. The time-frequency feature representation is input to an acoustic model comprising a trained artificial neural network. The trained artificial neural network comprising a frequency convolution layer, a memory layer, and one or more hidden layers. An output that is based on output of the trained artificial neural network is received. A transcription is provided, where the transcription is determined based on the output of the acoustic model.

    Multichannel raw-waveform neural networks

    公开(公告)号:US10339921B2

    公开(公告)日:2019-07-02

    申请号:US14987146

    申请日:2016-01-04

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using neural networks. One of the methods includes receiving, by a neural network in a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal, the first raw audio signal and the second raw audio signal for the same period of time, generating, by a spatial filtering convolutional layer in the neural network, a spatial filtered output the first data and the second data, generating, by a spectral filtering convolutional layer in the neural network, a spectral filtered output using the spatial filtered output, and processing, by one or more additional layers in the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.

    ADAPTIVE AUDIO ENHANCEMENT FOR MULTICHANNEL SPEECH RECOGNITION

    公开(公告)号:US20180197534A1

    公开(公告)日:2018-07-12

    申请号:US15848829

    申请日:2017-12-20

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for neural network adaptive beamforming for multichannel speech recognition are disclosed. In one aspect, a method includes the actions of receiving a first channel of audio data corresponding to an utterance and a second channel of audio data corresponding to the utterance. The actions further include generating a first set of filter parameters for a first filter based on the first channel of audio data and the second channel of audio data and a second set of filter parameters for a second filter based on the first channel of audio data and the second channel of audio data. The actions further include generating a single combined channel of audio data. The actions further include inputting the audio data to a neural network. The actions further include providing a transcription for the utterance.

    AUDIO-VISUAL SPEECH SEPARATION
    8.
    发明申请

    公开(公告)号:US20230122905A1

    公开(公告)日:2023-04-20

    申请号:US17951002

    申请日:2022-09-22

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for audio-visual speech separation. A method includes: obtaining, for each frame in a stream of frames from a video in which faces of one or more speakers have been detected, a respective per-frame face embedding of the face of each speaker; processing, for each speaker, the per-frame face embeddings of the face of the speaker to generate visual features for the face of the speaker; obtaining a spectrogram of an audio soundtrack for the video; processing the spectrogram to generate an audio embedding for the audio soundtrack; combining the visual features for the one or more speakers and the audio embedding for the audio soundtrack to generate an audio-visual embedding for the video; determining a respective spectrogram mask for each of the one or more speakers; and determining a respective isolated speech spectrogram for each speaker.

    Adaptive audio enhancement for multichannel speech recognition

    公开(公告)号:US11257485B2

    公开(公告)日:2022-02-22

    申请号:US16708930

    申请日:2019-12-10

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for neural network adaptive beamforming for multichannel speech recognition are disclosed. In one aspect, a method includes the actions of receiving a first channel of audio data corresponding to an utterance and a second channel of audio data corresponding to the utterance. The actions further include generating a first set of filter parameters for a first filter based on the first channel of audio data and the second channel of audio data and a second set of filter parameters for a second filter based on the first channel of audio data and the second channel of audio data. The actions further include generating a single combined channel of audio data. The actions further include inputting the audio data to a neural network. The actions further include providing a transcription for the utterance.

    ENHANCED MULTI-CHANNEL ACOUSTIC MODELS

    公开(公告)号:US20210295859A1

    公开(公告)日:2021-09-23

    申请号:US17303822

    申请日:2021-06-08

    Applicant: Google LLC

    Abstract: This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.

Patent Agency Ranking