Abstract:
An IR-cut filter includes a substrate and an infrared filtering film. The substrate is made of sapphire, and includes a first surface and a second surface opposite to the first surface. The infrared filtering film covers the first surface of the substrate and increases the reflectivity in relation to infrared light, thus filtering out the infrared light. The infrared filtering film includes a number of first high refraction index layers and a number of first low refraction index layers alternately stacked on the first surface of the substrate.
Abstract:
A light emitting module includes a dielectric substrate, a solar cell unit, a metal pattern layer, light emitting units, and a power storage component. The dielectric substrate has a first surface and a second surface opposite to the first surface. The solar cell unit is positioned on the first surface. The metal pattern layer is positioned on the second surface. The light emitting units is positioned on the metal pattern layer. The power storage component includes a power charge port electrically coupled to the solar cell unit, and a power supply port electrically coupled to the metal pattern layer.
Abstract:
A vehicle safety system includes a motion detecting device, a control module, a positioning module, and a wireless transmitting module. The motion detecting device is configured for sensing the motion of a vehicle and recording corresponding motion data. The control module is configured for analyzing the motion data and judging whether an accident has occurred to the vehicle based upon the analysis. The positioning module is configured for obtaining position coordinates of the vehicle. The wireless transmitting module is configured for automatically making contact with and reporting the position coordinates of the vehicle to a remote service station when an accident has occurred to the vehicle.
Abstract:
A touch panel includes a first electrode plate and a second electrode plate connected to the first electrode plated. The first electrode plate includes a first substrate, and a first conductive layer disposed on the first substrate. The second electrode includes a second substrate, and a second conductive layer disposed on the second substrate. The first or the second conductive layer includes at least one carbon nanotube composite layer.
Abstract:
A heat collector includes a heat absorption surface, an opposite heat focus surface and one or more surrounding sides. A matrix of the heat collector is a thermally conductive material. There is a plurality of adiabatic pores mixed within the matrix. A relative concentration distribution of the adiabatic pores increases from the heat absorption surface to the heat focus surface, and decreases from the surrounding sides to a center of the heat collector. The shape of the heat collector can be rectangular, cylindrical, prismatic, plate-shaped, square, or polyhedral. The heat collector can draw heat generated from electrical components, and collect the generated heat for reuse in order to enhance energy efficiency.
Abstract:
A projecting device includes a light source, a filtering component, a reflecting mirror, a digital micro-mirror device, a projecting lens, and a panel. The filtering component changes lights emitted from the light source into substantially parallel polarized ultraviolet lights. The reflecting mirror reflects the substantially parallel polarized ultraviolet lights to the digital micro-mirror device. The digital micro-mirror device includes microscopic mirrors arranged in a rectangular array configured to be adjustable to reflect the substantially parallel polarized ultraviolet lights reflected by the reflecting mirror to the projecting lens. The projecting lens diverges the substantially parallel polarized ultraviolet lights. The panel includes a transparent substrate, a first fluorescence material layer, a second fluorescence material layer, and a third fluorescence material layer. The first, second, and third fluorescence material layers are positioned on the transparent substrate and emit red, blue and green lights when excited.
Abstract:
An exemplary electronic dinosaur toy includes a body, a neck, four legs, a tail, a head, four first actuators, and four pressure sensors. The neck, the legs and the tail are connected to the body. The head is connected to a distal end of the neck. The four first actuators are arranged inside the respective legs and configured for driving the corresponding leg to move. The four pressure sensors are arranged at distal ends of the respective legs, and configured for sensing a variation of a pressure applied to the leg and outputting a feedback signal. Thereby, the first actuator adjusts a movement of the leg based on the feedback signal.
Abstract:
A solar cell includes a back metal-contact layer, a P-type semiconductor layer, a P-N junction layer, an N-type semiconductor layer and a transparent electrically conductive layer. The P-type semiconductor layer is formed on the back metal-contact layer. The P-type semiconductor layer is comprised of nano particles of a P-type semi-conductive compound. The P-N junction layer is formed on the P-type semiconductor layer. The N-type semiconductor layer is formed on the P-N junction layer. The N-type semiconductor layer is comprised of nano particles of an N-type semi-conductive compound. The transparent electrically conductive layer is formed on the N-type semiconductor layer and functions as a front contact layer.
Abstract:
A liquid crystal lens includes a first light-pervious plate, a second light-pervious plate opposite to the first light-pervious plate, a liquid crystal layer sandwiched between the first light-pervious plate and the second light-pervious plate, a first electrode layer, a second electrode layer and a driving voltage chip. The first electrode layer includes a plurality of concentric, annular electrodes arranged on a surface of the first light-pervious plate. A material of the first electrode layer is carbon nanotube. The second electrode layer is arranged on a surface of the second light-pervious plate. The driving voltage chip is configured for providing voltages between each of the annular electrodes and the second electrode layer in radial gradient distribution. A lens module is also provided in the present invention.
Abstract:
A heat pipe (1) includes a shell (20), a protective layer (10) formed on an outer surface of the shell, a wick (30) and a hydrophilic layer (40) sequentially formed on an inner surface of the shell, and a working fluid contained in the shell. A material of the shell is metal, such as copper, aluminum, or a copper-aluminum alloy. The protective layer is formed of nanomaterials, such as carbon nanotubes, nano-sized copper particles, nano-sized aluminum particles, or nano-sized particles of a copper-aluminum alloy. The wick is made from a mixture of carbon fibers and carbon nanocapsules. The hydrophilic layer is made from nanomaterials, for example, titanium dioxide, zinc oxide, alumina, or any mixture thereof.