Abstract:
A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
Abstract:
A system receives a plurality of data samples associated with a control valve with each of the plurality of data samples associated with a setpoint and a position. A first subset of the data samples that are in a control zone associated with normal operation of the control valve is determined. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to a minimum position of the plurality of data samples and (iii) have setpoints less than their associated positions, an alert associated with a low obstruction is indicated. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to the maximum position of the plurality of data samples and (iii) have setpoint greater than their associated position, an alert is indicated.
Abstract:
A method of performing online diagnostics for a valve includes receiving valve information while the valve is in operation. The valve information includes setpoint data and position data associated with the valve. The method further includes processing the setpoint data and the position data at a plurality of time intervals, and detecting an occurrence of a stick-slip based on the processing.
Abstract:
According to some embodiments, a signal processing unit may receive distributed acoustic sensing data associated with a first set of a plurality of pipeline locations. The signal processing unit may also receive collected physical data representing a physical characteristic of a second set of a plurality of pipeline locations. The signal processing unit may then utilize a pipeline model having the distributed acoustic sensing data and collected physical data as inputs to automatically generate at least one alert indicating an increased probability of damage to the pipeline.
Abstract:
A system receives a plurality of data samples associated with a control valve with each of the plurality of data samples associated with a setpoint and a position. A first subset of the data samples that are in a control zone associated with normal operation of the control valve is determined. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to a minimum position of the plurality of data samples and (iii) have setpoints less than their associated positions, an alert associated with a low obstruction is indicated. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to the maximum position of the plurality of data samples and (iii) have setpoint greater than their associated position, an alert is indicated.
Abstract:
An imaging system is provided. The imaging system includes an X-ray radiation source. The imaging system also includes a source controller coupled to the X-ray radiation source and configured to modulate an exposure pattern from the X-ray radiation source to enable a coded exposure sequence. The imaging system further includes a digital X-ray detector configured to acquire image data that includes at least one coded motion blur.
Abstract:
A system and method for contactless handprint capture is disclosed that includes an image capture device to capture handprint images of a subject hand at each of a plurality of different focal distances, with the image capture device including an imaging camera and an electro-optics arrangement having a plurality of light modulating elements and polarization sensitive optical elements having differing optical path lengths based on polarization states. A control system is coupled to the image capture device to cause the device to capture the handprint images at each of the different focal distances, with each handprint image having a depth-of-focus that overlaps with a depth-of-focus of handprint images at adjacent focal distances such that redundant handprint image data is captured. The control system registers each handprint image with positional data and creates a composite handprint image from the handprint images captured at the different focal distances.
Abstract:
A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
Abstract:
A wind turbine control system is disclosed. The wind turbine control system includes a wind turbine, at least one sensor configured to detect at least one environmental condition associated with the wind turbine, and a wind turbine controller communicatively coupled to the wind turbine and the at least one sensor. The wind turbine controller includes at least one processor in communication with at least one memory device. The at least one processor is configured to retrieve at least one wind condition variable associated with the wind turbine, retrieve a power curve, the power curve generated based on the at least one wind condition variable by computing, for each of a plurality of wind speed values, a power value, receive, from the at least one sensor, sensor data, and control the wind turbine using the generated power curve based on the received sensor data.
Abstract:
A system to monitor a composite system component may include a plurality of sensors mounted proximate to the composite system component. A signal processing unit may receive, from each of the plurality of sensors, a series of sensed values associated with the composite system component and determine a kurtosis value for each series of sensed values. A threshold exceedance detector may detect if at least one of the kurtosis values exceeds a pre-determined threshold value. A delamination location estimation unit may calculate an estimated location of a composite system component delamination alert signal based on calculated time difference delay values of detected signal impulses in the series of sensed values using at least four of the plurality of sensors. A delamination alert output may then transmit a composite system component delamination alert signal, along with the estimated location, when at least one of the kurtosis values exceeds the pre-determined threshold.