Abstract:
An air cooled turbine blade with a trailing edge cooling circuit that is formed by casting the airfoil with a pressure side trailing edge lip being oversized, and then machining away material from the pressure side wall to leave a pressure side bleed slot with a smaller (t/s) ratio than can be formed by casting alone. In another embodiment, the airfoil is cast with a trailing edge exit hole, and then the material on the pressure side wall in the trailing edge region is machined away to leave a pressure side bleed slot instead of an exit hole.
Abstract:
A turbine rotor blade with a four-pass aft flowing serpentine flow cooling circuit with a first leg located along the leading edge and the fourth leg located along the trailing edge region, and with two exit slots connected to the fourth leg with one exit slot opening on the trailing edge just above the platform and the second exit slot opening just below the platform.
Abstract:
An air cooled turbine airfoil with a leading edge region having rows of diffusion slots opening onto the airfoil surface. Each diffusion slot is connected to a plurality of metering and diffusion holes that meter the cooling air flow and provide for a first diffusion of the cooling air. The metering holes and diffusion holes are angled in order to improve the cooling effectiveness of the passages. The metering and diffusion holes and diffusion slots are formed from a metal printing process that can produce features that cannot be formed from an investment casting process that uses a ceramic core.
Abstract:
A stator vane with endwalls having film cooling diffusion slots that open onto the hot gas surface. Each diffusion slot is formed as a row of one or more separated diffusion slots each having a serpentine flow channel and one or more metering inlet holes to supply spent cooling air from an impingement chamber to the diffusion slots. The metering inlet holes meter the flow of cooling air into the serpentine channels, the serpentine channels provide convection cooling for the endwalls, and the diffusion slots diffuse the cooling air into a layer of film cooling air onto the hot gas surface of the endwalls.
Abstract:
A turbine blade having an internal cooling system with incremental serpentine cooling channels in near walls forming an outer surface of the turbine blade is disclosed. The turbine blade may be formed from an internal structural spar that is covered with a thermal skin. The incremental serpentine cooling channels may be cut into the outer surface of the spar to which the thermal skin may be attached. The incremental serpentine cooling channels may be formed from two or more serpentine cooling channels aligned along an axis that extends generally spanwise throughout the turbine blade. A row of incremental serpentine cooling channels may extend from a root to a tip of the blade, but a single incremental cooling channel does not.
Abstract:
A cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor, through one or more impellers, and into row one turbine vanes and one or more rows of turbine blades for increasing the cooling capacity of the turbine vanes and blades. Such a configuration increases cooling capacity, which in turn increases the capacity for growth within the turbine engine, creates a larger cooling fluid to gas side pressure differential and reduces amount of bleed off of cooling fluids from the compressor, thereby increasing efficiency of the turbine engine.
Abstract:
A turbine stator vane with an endwall cooling circuit that includes a first ten-pass serpentine flow cooling circuit and a second ten-pass serpentine flow cooling circuit. Each serpentine circuit is connected to cooling air feed holes supplied from an endwall impingement cavity, where cooling air serpentines along the leading edge section of the endwall, along the two mate faces, and then serpentines along the trailing edge section where the cooling air is discharged from exit holes spaced along the trailing edge side of the endwall.
Abstract:
A stator vane for an industrial turbine, the vane includes a serpentine flow cooling circuit for cooling of the airfoil, and a separate purge air channel to supply purge air to the rim cavities. The purge channel is formed as a separate channel from the serpentine flow channels so that the purge air is not heated by the hot metal and has smooth surfaces so that pressure losses is minimal.
Abstract:
A BOAS segment for a turbine includes an impingement cavity with circular cooling air supply holes adjacent to a leading edge side of the cavity and is connected to main body axial cooling holes that open onto the trailing edge side of the BOAS segment. Cooling supply holes are located at the four corners of the impingement cavity and are connected to multiple cooling holes that open onto both edges of the segment in that corner. Thin metering cooling slots are positioned along the mate face sides in the cavity and are each connected to multiple cooling holes that discharge cooling air onto the mate face edges.
Abstract:
A turbine rotor blade with counter flowing near wall cooling channels that includes an outer spanwise flowing near wall cooling channel and an inner chordwise flowing near wall cooling channel connected in series and with an arrangement of pedestals to produce turbulent flow. Cooling air form the spanwise flow channels flows through a blade tip floor cooling channel and then into a collection cavity, and then through impingement cooling holes in the leading edge region and into the chordwise channels before discharging out exit holes on both sides of the blade. An arrangement of pedestals forms 90 degree flow paths through the near wall cooling channels.