Abstract:
A method of making carbon fiber material according to various embodiments of the present disclosure includes forming a polymer resin to have a polydispersity index (PDI) that is less than approximately 2.5. The method further includes spinning the polymer resin to create an acrylic fiber having an acrylic fiber length. The method further includes oxidizing the acrylic fiber while stretching the acrylic fiber to create an oxidized fiber that has an oxidized fiber length that is at least one of greater than or equal to approximately 100 percent (100%) of the acrylic fiber length. The method further includes carbonizing the oxidized fiber to create a carbon fiber.
Abstract:
A method of making a carbon-carbon composite part may comprise fabricating a fibrous preform comprising a fiber volume ratio of 25% or greater, heat treating the fibrous preform at a first temperature, infiltrating the fibrous preform with a first ceramic suspension, densifying the fibrous preform by chemical vapor infiltration (CVI) to form a densified fibrous preform, and heat treating the densified fibrous preform at a second temperature of 1600° C. or greater.
Abstract:
A carbon/carbon brake disk is provided. The carbon/carbon brake disk may comprise a carbon fiber, wherein the carbon fiber is formed into a fibrous network, wherein the fibrous network comprises carbon deposited therein. The carbon fiber may undergo a FHT process, wherein micro-cracks are disposed in the carbon fiber. In various embodiments, the micro-cracks may be at least partially filled with un-heat-treated carbon via a final CVD process, wherein the final CVD process is performed at a temperature in the range of up to about 1,000° C. (1,832° F.) for a duration in the range from about 20 hours to about 100 hours. In various embodiments, the un-heat-treated carbon may be configured to prevent oxygen, moisture, and/or oxidation protection systems (OPS) chemicals from penetrating the carbon/carbon brake disk. In various embodiments, the final CVI/CVD process may be configured to increase the wear life of the carbon/carbon brake disk.
Abstract:
A process for densifying an annular porous structure comprising flowing a reactant gas into an inner diameter (ID) volume and through an ID surface of the annular porous structure, flowing the reactant gas through an outer diameter (OD) surface of the annular porous structure and into an OD volume, flowing the reactant gas from the OD volume through the OD surface of the annular porous structure, and flowing the reactant gas through an ID surface of the annular porous structure and into the ID volume.
Abstract:
The method may include forming fibers with a silicon-based sizing, forming a fibrous preform from the fibers, forming a silicon dioxide coating around the fibers, carbonizing the fibrous preform, and densifying the fibrous preform. In various embodiments, forming the fibers with the silicon-based sizing includes utilizing a mass of the silicon-based sizing that is at least 1.0% of a mass of the fibers.
Abstract:
A carbon/carbon brake disk is provided. The carbon/carbon brake disk may comprise a carbon fiber, wherein the carbon fiber is formed into a fibrous network, wherein the fibrous network comprises carbon deposited therein. The carbon fiber may undergo a FHT process, wherein micro-cracks are disposed in the carbon fiber. In various embodiments, the micro-cracks may be at least partially filled with un-heat-treated carbon via a final CVD process, wherein the final CVD process is performed at a temperature in the range of up to about 1,000° C. (1,832° F.) for a duration in the range from about 20 hours to about 100 hours. In various embodiments, the un-heat-treated carbon may be configured to prevent oxygen, moisture, and/or oxidation protection systems (OPS) chemicals from penetrating the carbon/carbon brake disk. In various embodiments, the final CVI/CVD process may be configured to increase the wear life of the carbon/carbon brake disk.
Abstract:
An air entanglement system having a housing, a first rotatable surface disposed with the housing, and a second rotatable surface disposed with the housing proximate the first rotatable surface is described herein. The first rotatable surface may comprise a first plurality of air jets configured to air entangle a preform in situ. The second rotatable surface may be disposed with the housing proximate the first rotatable surface. The second rotatable surface may comprise a second plurality of air jets configured to air entangle the preform in situ. The air entanglement system may be configured to achieve negative pressure in response to being under suction.
Abstract:
A process for densifying an annular porous structure comprising flowing a reactant gas into an inner diameter (ID) volume and through an ID surface of the annular porous structure, flowing the reactant gas through an outer diameter (OD) surface of the annular porous structure and into an OD volume, flowing the reactant gas from the OD volume through the OD surface of the annular porous structure, and flowing the reactant gas through an ID surface of the annular porous structure and into the ID volume.
Abstract:
A method of making carbon fiber material according to various embodiments of the present disclosure includes forming a polymer resin to have a polydispersity index (PDI) that is less than approximately 2.5. The method further includes spinning the polymer resin to create an acrylic fiber having an acrylic fiber length. The method further includes oxidizing the acrylic fiber while stretching the acrylic fiber to create an oxidized fiber that has an oxidized fiber length that is at least one of greater than or equal to approximately 100 percent (100%) of the acrylic fiber length. The method further includes carbonizing the oxidized fiber to create a carbon fiber.
Abstract:
A system is disclosed comprising a carbon/carbon brake disk comprising a carbon fiber having a crystal orientation (CO) between 80% and 100% and a coefficient of friction of more than 0.183 in response to a rejected takeoff condition.