Abstract:
A light detection and ranging device with dynamically adjustable angular resolution for use as a sensor providing environmental information for navigating an autonomous vehicle is disclosed. A first region of a scanning zone is scanned while emitting light pulses at a first pulse rate, and a second region of the scanning zone is scanned while emitting light pulses at a second pulse rate different from the first pulse rate. Information from the LIDAR device indicative of the time delays between the emission of the light pulses and the reception of the corresponding returning light pulses is received. A three dimensional point map is generated where the resolution of the point map in the first region is based on the first pulse rate and is based on the second pulse rate in the second region.
Abstract:
A vehicle configured to operate in an autonomous mode can obtain sensor data from one or more sensors observing one or more aspects of an environment of the vehicle. At least one aspect of the environment of the vehicle that is not observed by the one or more sensors could be inferred based on the sensor data. The vehicle could be controlled in the autonomous mode based on the at least one inferred aspect of the environment of the vehicle.
Abstract:
A vehicle configured to operate in an autonomous mode is provided. The vehicle is configured to obtain an indication of a final destination, and, if the final destination is not on a pre-approved road for travel by the vehicle, the vehicle is configured to determine a route from the vehicle's current location to an intermediary destination. The vehicle is further configured to determine a means for the vehicle user to reach the final destination from the intermediate destination.
Abstract:
A vehicle configured to operate in an autonomous mode may engage in a reverse-parallax analysis that includes a vehicle system detecting an object, capturing via a camera located at a first location a first image of the detected object, retrieving location data specifying (i) a location of a target object, (ii) the first location, and (iii) a direction of the camera, and based on the location data and the position of the detected object in the first image, predicting where in a second image captured from a second location the detected object would appear if the detected object is the target object.
Abstract:
A system and method include scanning a light detection and ranging (LIDAR) device through a range of orientations corresponding to a scanning zone while emitting light pulses from the LIDAR device. The method also includes receiving returning light pulses corresponding to the light pulses emitted from the LIDAR device and determining initial point cloud data based on time delays between emitting the light pulses and receiving the corresponding returning light pulses and the orientations of the LIDAR device. The initial point cloud data has an initial angular resolution. The method includes identifying, based on the initial point cloud data, a reflective feature in the scanning zone and determining an enhancement region and an enhanced angular resolution for a subsequent scan to provide a higher spatial resolution in at least a portion of subsequent point cloud data from the subsequent scan corresponding to the reflective feature.
Abstract:
A vehicle configured to operate in an autonomous mode can obtain sensor data from one or more sensors observing one or more aspects of an environment of the vehicle. At least one aspect of the environment of the vehicle that is not observed by the one or more sensors could be inferred based on the sensor data. The vehicle could be controlled in the autonomous mode based on the at least one inferred aspect of the environment of the vehicle.
Abstract:
Disclosed herein are methods and apparatus for controlling autonomous vehicles utilizing maps that include visibility information. A map is stored at a computing device associated with a vehicle. The vehicle is configured to operate in an autonomous mode that supports a plurality of driving behaviors. The map includes information about a plurality of roads, a plurality of features, and visibility information for at least a first feature in the plurality of features. The computing device queries the map for visibility information for the first feature at a first position. The computing device, in response to querying the map, receives the visibility information for the first feature at the first position. The computing device selects a driving behavior for the vehicle based on the visibility information. The computing device controls the vehicle in accordance with the selected driving behavior.
Abstract:
Methods and devices for using a relationship between activities of different traffic signals in a network to improve traffic signal state estimation are disclosed. An example method includes determining that a vehicle is approaching an upcoming traffic signal. The method may further include determining a state of one or more traffic signals other than the upcoming traffic signal. Additionally, the method may also include determining an estimate of a state of the upcoming traffic signal based on a relationship between the state of the one or more traffic signals other than the upcoming traffic signal and the state of the upcoming traffic signal.
Abstract:
A vehicle configured to operate in an autonomous mode may engage in a reverse-parallax analysis that includes a vehicle system detecting an object, capturing via a camera located at a first location a first image of the detected object, retrieving location data specifying (i) a location of a target object, (ii) the first location, and (iii) a direction of the camera, and based on the location data and the position of the detected object in the first image, predicting where in a second image captured from a second location the detected object would appear if the detected object is the target object.
Abstract:
Methods and devices for using a relationship between activities of different traffic signals in a network to improve traffic signal state estimation are disclosed. An example method includes determining that a vehicle is approaching an upcoming traffic signal. The method may further include determining a state of one or more traffic signals other than the upcoming traffic signal. Additionally, the method may also include determining an estimate of a state of the upcoming traffic signal based on a relationship between the state of the one or more traffic signals other than the upcoming traffic signal and the state of the upcoming traffic signal.