Abstract:
Embodiments of the present invention relate to displaying and navigating within photo placemarks in a geographic information system. In one embodiment, a computer implemented method displays a photographic image within geographic information in a geographic information system. The photographic image is displayed at a location within the geographic information when the photographic image is located within a field of view of a virtual camera of the geographic information system. In response to a computer input event, the photographic image is displayed in greater detail.
Abstract:
Data-driven guarded evaluation of conditional-data associated with data objects is used to control activation and processing of the data objects in an interactive geographic information system. Methods of evaluating conditional-data to control activation of the data objects are disclosed herein. Data structures to specify conditional data are also disclosed herein.
Abstract:
Terrain data that represents earth features for a geographic area is received. The following meshes are generated based on the terrain data: (i) a water surface mesh including a first plurality of geometric primitives and (ii) a water bottom mesh including a second plurality of geometric primitives. Portions of the water bottom mesh appearing above the water surface mesh are identified. At least one of the water surface mesh and the water bottom mesh are corrected to cause the water surface mesh to appear above the water bottom mesh.
Abstract:
Systems and methods for approximating terrain data representing a water surface are disclosed. A computer-based geographical information system for approximating terrain data representing a water surface is provided. The system includes a mesh simplifier and a surface inversion corrector. The mesh simplifier simplifies initial water surface and water bottom meshes. The surface inversion corrector corrects simplified water surface and/or water bottom meshes to avoid having a water bottom surface incorrectly appear above a corresponding water surface in a display view. In one example, the mesh simplifier simplifies the initial water surface mesh while accounting for water/land boundaries. The mesh simplifier also simplifies the initial water bottom mesh while accounting for geographic features and/or water/land boundaries. A computer-implemented method for approximating terrain data representing a water surface is provided. In further embodiments, systems and methods for altering tile information received at a client device are provided.
Abstract:
Interactive geographic information systems (GIS) and techniques are disclosed that provide users with a greater degree of flexibility, utility, and information. A markup language is provided that facilitates communication between servers and clients of the interactive GIS, which enables a number of GIS features, such as network links (time-based and/or view-dependent dynamic data layers), ground overlays, screen overlays, placemarks, 3D models, and stylized GIS elements, such as geometry, icons, description balloons, polygons, and labels in the viewer by which the user sees the target area. Also, “virtual tours” of user-defined paths in the context of distributed geospatial visualization is enabled. Streaming and interactive visualization of filled polygon data are also enabled thereby allowing buildings and other such features to be provided in 3D. Also, techniques for enabling ambiguous search requests in a GIS are provided.
Abstract:
Data-driven guarded evaluation of conditional-data associated with data objects is used to control activation and processing of the data objects in an interactive geographic information system. Methods of evaluating conditional-data to control activation of the data objects are disclosed herein. Data structures to specify conditional data are also disclosed herein.
Abstract:
Interactive geographic information systems (GIS) and techniques are disclosed that provide users with a greater degree of flexibility, utility, and information. A markup language is provided that facilitates communication between servers and clients of the interactive GIS, which enables a number of GIS features, such as network links (time-based and/or view-dependent dynamic data layers), ground overlays, screen overlays, placemarks, 3D models, and stylized GIS elements, such as geometry, icons, description balloons, polygons, and labels in the viewer by which the user sees the target area. Also, “virtual tours” of user-defined paths in the context of distributed geospatial visualization is enabled. Streaming and interactive visualization of filled polygon data are also enabled thereby allowing buildings and other such features to be provided in 3D. Also, techniques for enabling ambiguous search requests in a GIS are provided.
Abstract:
Interactive geographic information systems (GIS) and techniques are disclosed that provide users with a greater degree of flexibility, utility, and information. A markup language is provided that facilitates communication between servers and clients of the interactive GIS, which enables a number of GIS features, such as network links (time-based and/or view-dependent dynamic data layers), ground overlays, screen overlays, placemarks, 3D models, and stylized GIS elements, such as geometry, icons, description balloons, polygons, and labels in the viewer by which the user sees the target area. Also, “virtual tours” of user-defined paths in the context of distributed geospatial visualization is enabled. Streaming and interactive visualization of filled polygon data are also enabled thereby allowing buildings and other such features to be provided in 3D. Also, techniques for enabling ambiguous search requests in a GIS are provided.
Abstract:
Systems and methods for approximating terrain data representing a water surface are disclosed. A computer-based geographical information system for approximating terrain data representing a water surface is provided. The system includes a mesh simplifier and a surface inversion corrector. The mesh simplifier simplifies initial water surface and water bottom meshes. The surface inversion corrector corrects simplified water surface and/or water bottom meshes to avoid having a water bottom surface incorrectly appear above a corresponding water surface in a display view. In one example, the mesh simplifier simplifies the initial water surface mesh while accounting for water/land boundaries. The mesh simplifier also simplifies the initial water bottom mesh while accounting for geographic features and/or water/land boundaries. A computer-implemented method for approximating terrain data representing a water surface is provided. In further embodiments, systems and methods for altering tile information received at a client device are provided.
Abstract:
Terrain data that represents earth features for a geographic area is received. The following meshes are generated based on the terrain data: (i) a water surface mesh including a first plurality of geometric primitives and (ii) a water bottom mesh including a second plurality of geometric primitives. Portions of the water bottom mesh appearing above the water surface mesh are identified. At least one of the water surface mesh and the water bottom mesh are corrected to cause the water surface mesh to appear above the water bottom mesh.